

SYNTHÈSE

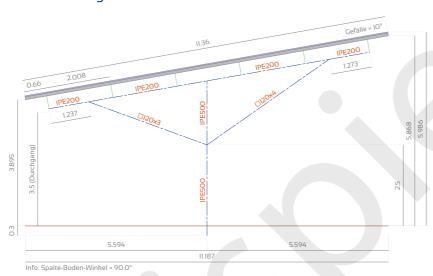
ENTWURFSBERICHT ZUR STRUKTURANALYSE

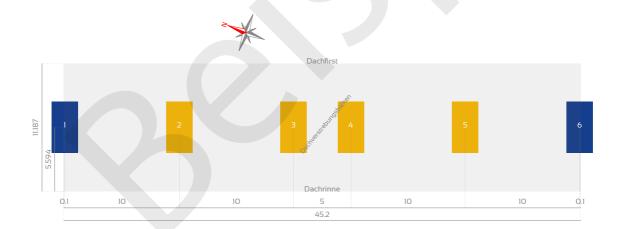
Projet exemple rapport - Exemple de client

Projekt definiert durch : XXX-XXX

contact@eurocodes-tools.com

Letzte Aktualisierung : 2024-12-17 10:16

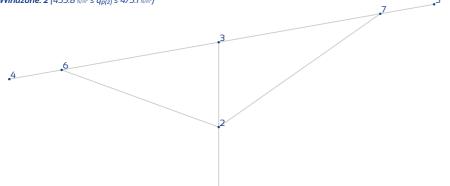

A - ALLGEMEINE INFORMATIONEN


Titel des Projekts : Projet exemple rapport Name des Kunden : Exemple de client

Letzte Aktualisierung: 2024-12-17 10:16 Software-Version: 03-0916

B-DATEN UND ZUSAMMENFASSUNG DER ERGEBNISSE

B1-Skizzen und Abmessungen der Photovoltaik-Schattendach



B 2 - Zusammenfassung der Prüfungen nach den Eurocodes

	Element		Überprüfen Sie (Es ist in Ordnung, wenn die Rate weniger als 100% beträgt.)
Stütze	IPE500	S275	OK (91.8 %)
Riegel	IPE200	S275	OK (92.8 %)
Linke Diagonalstrebe	□120x3	S235	OK (79.0 %)
Rechte Diagonalstrebe	□120x4	S235	OK (78.9 _%)

C - BERICHT ÜBER DIE VERTEILUNG DER LADUNGEN

Schneezone: A1 ($s_n = 0.45 \text{ kN/m}^2$)
Windzone: 2 ($455.8 \text{ N/m}^2 \le q_p(z) \le 475.1 \text{ N/m}^2$)

Achse	Breite der Ladung	Kontinuitätsfaktor
- 1	5.1 m	1.0
2	10.0 m	1.178
3	7.5 m	1.0
4	7.5 m	1.0
5	10.0 m	1.178
6	5.1 m	1.0

Achse 1 und 6

(Ladebreite: 5.1m, Kontinuitätsfaktor: 1.0)

Knotenpunkt	F _X (daN)	F _Y (daN)	F _Z (daN)	M _X (m.daN)	M _Y (m.daN)	M _Z (m.daN)					
Ständige Lasten											
1	0.0	-	-2684.7	-	-219.0	-					
	Normaler Schnee										
1	0.0	-	-2054.4	-	-0.0	-					
	ι	Jnbeabsid	htigter Sc	hnee							
1	-0.0	-	-0.0	-	-0.0	-					
	Durchhängen des linken Windes										
1	296.8	-	-1136.2	-	-2069.4	-					
	Abh	nebekraft (des linken	Windes							
1	-339.8	-	2474.1	-	5073.5	-					
	Durc	hhängen (des rechte	n Windes							
1	99.7	-	-1090.0	-	3977.0	-					
	Abh	ebekraft d	les rechte	n Windes							
1	-511.0	-	2373.6	-	-9204.4	-					
	Durch	nhängen d	es Vorder	er Windes	5						
1	95.6	669.3	-542.3	-2719.9	495.4	-0.0					
	Abhe	ebekraft d	es Vorder	er Windes							
1	-339.0	669.3	1922.8	-2719.9	-1756.7	-0.0					
	Ri	ückenwin	d in Durch	hänge							
1	95.6	-669.3	-542.3	2719.9	495.4	0.0					
		Rückenwi	nd im Auf	wind							
1	-339.0	-669.3	1922.8	2719.9	-1756.7	0.0					

Achse 2, 3, 4 und 5

(Ladebreite: 10.0m, Kontinuitätsfaktor: 1.178)

Knotenpunkt	F_{X} (daN)	F _Y (daN)	F _Z (daN)	M _X (m.daN)	M _Y (m.daN)	M _Z (m.daN)				
	Ständige Lasten									
1	0.0	-	-4834.2	-	-592.5	-				
		Norma	aler Schn	ee						
1	0.0	-	-4743.6	-	-0.0	-				
		Unbeabsi	chtigter S	chnee						
1	-0.0	-	-0.0	-	-0.0	-				
	Dur	chhängen	des linke	n Windes						
1	559.0	-	-2623.3	-	-5079.5	-				
	Abl	nebekraft	des linke	n Windes						
1	-910.9	-	5712.6	-	11413.1	-				
	Durc	hhängen	des recht	en Windes	5					
1	351.3	-	-2516.8	-	9471.8	-				
	Abh	ebekraft o	des rechte	en Windes						
1	-1058.9	-	5480.5	-	-20963.6	-				
	Durch	nhängen o	les Vorde	rer Winde	s					
1	220.8	669.3	-1252.0	-2719.9	1143.9	-0.0				
	Abhe	ebekraft d	es Vorde	rer Winde	5					
1	-782.8	669.3	4439.7	-2719.9	-4056.1	-0.0				
	R	ückenwin	d in Durcl	hhänge						
1	220.8	-669.3	-1252.0	2719.9	1143.9	0.0				
		Rückenwi	nd im Au	fwind						
1	-782.8	-669.3	4439.7	2719.9	-4056.1	0.0				

Zusätzliche Einwirkungen, die für an das Stabilitätssystem angrenzende Stützen zu berücksichtigen sind (Dachaussteifungsträger):

Position	F _X (daN)	F _Y (daN)	F _{Z (daN)}	M _X (m.daN)	M _Y (m.daN)	M _Z (m.daN)				
Durchhängen des Vorderer Windes und Abhebekraft des Vorderer Windes										
Achse 4	44.8	-	7.9	-	214.1	-				
Achse 3	-44.8	-	-7.9	-	-214.1	-				
		Rückenwind in Du	urchhänge und Rücke	nwind im Aufwind						
Achse 3	44.8	-	7.9	-	214.1	-				
Achse 4	-44.8	-	-7.9	-	-214.1	-				

D - STRUKTURELLES VERHALTEN UND KONSTRUKTIONSPRINZIPIEN

Für die Bemessungsberechnungen wird der am stärksten belastete Portalrahmen verwendet (Achse 2).

D1-Pfetten

D 1.1 - Empfohlene Mindestdicke

Die Photovoltaik-Paneele sind an einem Integrationssystem befestigt.

Die Mindeststärke der Pfetten wird vom Lieferanten des Integrationssystems empfohlen (normalerweise 2,5 mm Mindeststärke).

D 1.2 - Für die Bemessung von kaltgeformten Pfetten erforderliche Normalkräfte

Die Querschnitte der Pfetten müssen ausreichen, um die Normalkräfte über den Dachquerverband aufzunehmen, insbesondere den Druck (in den Diagrammen rot dargestellt).

Diagramm der in der Dachebene zirkulierenden Normalkräfte bei einem Frontalwind (Einfacher ungewichteter Lastfall - gerundet in daN)

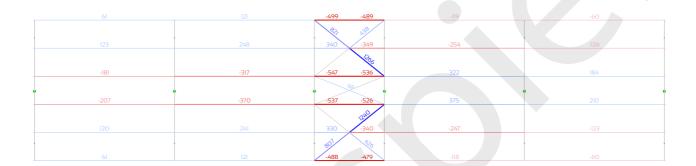


Diagramm der in der Dachebene zirkulierenden Normalkräfte bei einem Rückenwind (Einfacher ungewichteter Lastfall - gerundet in daN)

D2-Riegel

Der Obergurt wird durch die Pfetten eingespannt. Die Pfetten werden mit den Knotenpunkten der Dachaussteifung verbunden. Die seitlich ausknickende Länge des Obergurtes ist also der Abstand zwischen den Pfetten.

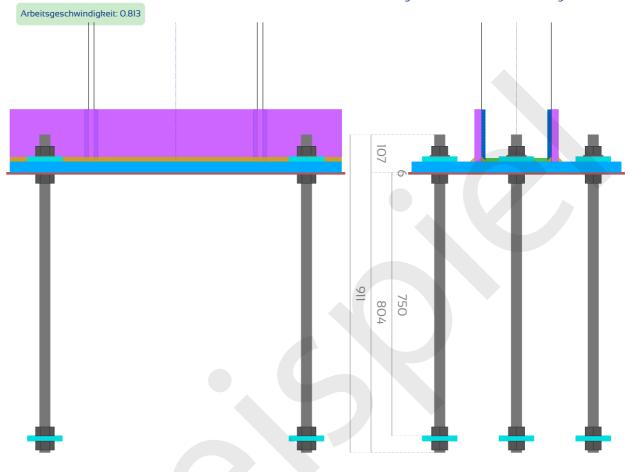
Der untere Flansch ist lotrecht zur Stütze (Torsionseinspannung) und zu den Diagonalstreben (Torsionsfeder) eingespannt, so dass das seitliche Ausknicken zwischen diesen Punkten überprüft wird, ohne den Einfluss der Verwindungseinspannung an den Stützen zu berücksichtigen. Das seitliche Ausknicken des Untergurtes wird in den auskragenden Teilen hinter den Diagonalstreben auf doppelte Länge geprüft.

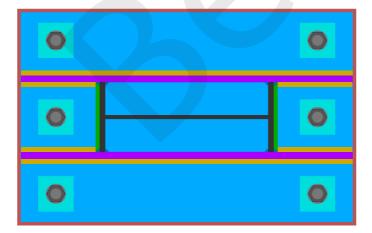
D3-Stütze

Das Biegeknicken um die y-y- und z-z-Achse wird für eine freitragende Stütze mit zwei unterschiedlich starken Knotenkräften (die erste am oberen Ende und die zweite am Schnittpunkt mit der Diagonale) berechnet. Für jede Kraftverteilung (abhängig von der Lastkombination) variieren diese Knicklängen daher in einem Intervall zwischen der 2-fachen Höhe des Diagonalstrebenschnittpunkts und der 2-fachen Gesamthöhe der Stütze.

Die Auswirkungen von Fahrzeugen auf die Stützen werden bei dieser Analyse nicht berücksichtigt.

Wenn das Risiko akzeptabel ist, müssen keine besonderen Maßnahmen ergriffen werden. Andernfalls sind Maßnahmen zur Risikominderung zu planen (Beschilderung / Schutz / zusätzliche Strukturanalyse im Falle eines Unfalls).


D 4 - Baugruppen


Die Verbindungsbolzen der Stahlteile müssen vom Typ SB (Structural Bolt) sein und mindestens der Klasse 8.8 entsprechen. Die Bohrungen entsprechen der Norm EN 1090-2 §6.6.1 « Abmessungen der Bohrungen ».

D 4.1 - Stützenfuß und Verankerungen

Die Drehung des Stützenfußes wird um die X- und Y-Achse auf -0.3m-Ebene auf C25/30-Betonfundamentblöcken blockiert. Die Verankerungen bestehen aus Gewindestangen, an deren Ende jeweils ein Verankerungsklotz befestigt ist, der in den Beton eingelassen wird.

Die Positionierungsplatte ist nützlich für die Positionierung von Ankern beim Betonieren und um eine ebene Auflagefläche zu erhalten. Ein zentrales Loch mit einem Durchmesser von 50 mm wird als Entlüftung während des Betonierens vorgesehen.

Lehrenplatte positionieren : 970x620x6 (S235) Grundplatte der Stütze : 950x600x30 (S235)

Versteifungen: 950x150x20 (S235)

Verankerungspolster und Stützpolster: 100x100x15 (S235)

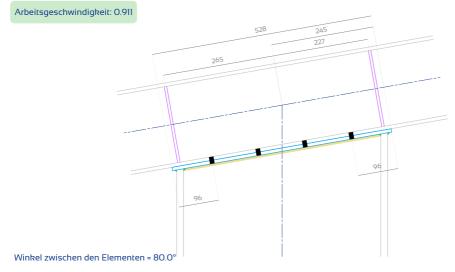
Ankerbolzen: M30 8.8

Abstände in Querrichtung P2	Randabstand e2	Abstand in Längsrichtung PI	Entfernung beenden _{ei}
220 mm > 79.2 mm	80.0 mm > 39.6 mm	750 mm > 79.2 mm	100.0 mm > 39.6 mm

Kehlen schweißen								
Horizontal an den	Horizontal an den	Vertikal auf der Stütze						
Stützenflanschen a,f	Versteifungen a,s	a,c						
8 mm	10 mm	8 mm						

Fundamentblöcke aus Beton C25/30: L \ge 4.5m x B \ge 2.3 m x H \ge 0.95m Der Mindestquerschnitt der Betonbewehrung zur Vermeidung von Spaltversagen sollte größer als 5.5 cm² sein.

Zusätzliche Bestimmungen:


Die Stützengrundplatte kann verlängert und verbreitert werden, um eventuell übergroße Löcher herzustellen (der Abstand von der Achse des Lochs zum Rand der Stützengrundplatte muss mindestens das 1,5-fache des Lochdurchmessers betragen).

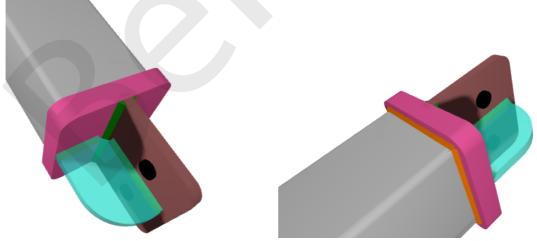
Um in diesem Fall die Übertragung der Querkraft von der Stützengrundplatte auf die Ankerbolzen zu ermöglichen, ist es notwendig, mehrere Lösungen zu wählen:

- Schweißen Sie die oberen Polster an die Grundplatte der Stütze.
- Füllen Sie den Ringraum (z.B. mit einem geeigneten Verankerungsharz).
- Auf jeder Seite der Stütze wird 1 Dübel in normalen Löchern angebracht (direkte Aufnahme der Schubkräfte durch die Dübel).

D 4.2 - Obere Endplatte der Stütze

Der Riegel wird über eine Endplatte aus S235-Stahl mit der Stütze verschraubt. Diese Verbindung wird als Pin berechnet.

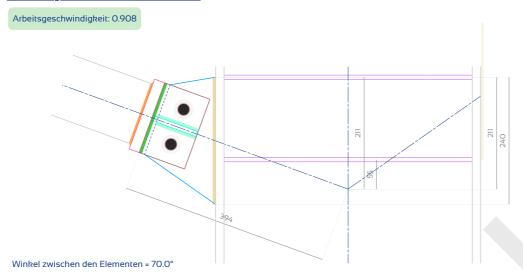
Endplatte	Dicke t _p	Breite	Länge	Bohrungen do	Schweißnaht an den Flanschen af	Schweißnaht im Internet a,w
	8.0 mm	200.0 mm	(Siehe Skizze)	11 mm	4 mm	4 mm
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der Unterlegscheibe	Abstände in Querrichtung _{P2}	Kantenabstand (Riegel) _{e2}	Abstand in Längsrichtung _{Pi}
	MIO 8.8 SB	10 mm	20 mm	58 mm > 26.4 mm	21.0 mm > 13.2 mm	112 mm > 24.2 mm
V	Dicke t _s	Breite bs	Position			
Versteifung	9 6 mm 40 mm	(Siehe Skizze)				


D 4.3 - Diagonale Streben Zwickel

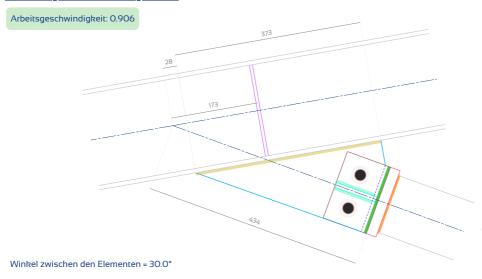
Die diagonalstreben werden aus Stahl von mindestens S235 hergestellt.

Auf der Riegel-/Stützenseite besteht der Anschluss aus einem einzelnen Zwickel, der auf beiden Seiten der Länge nach an den Flansch geschweißt wird (2 Schweißkehlen pro Zwickel) und mittig auf dem Steg liegt.

Auf der Seite der Strebe besteht die Verbindung aus einem einzelnen, mittig angeordneten Knotenpunkt, der auf eine Endplatte geschweißt ist und ein T bildet.

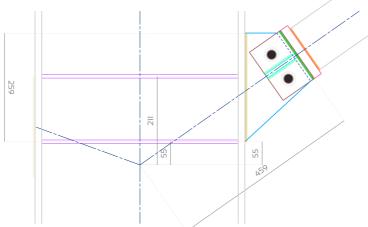

Diese T sind an den Enden der Diagonalstreben um den Umfang herum verschweißt.

Die Zwickel sind durch zwei Schrauben (und gehärtete Unterlegscheiben) miteinander verbunden, die durch einfaches Abscheren funktionieren.


Dieses Verbindungssystem bewirkt eine Exzentrizität der Kräfte, die von den anderen Elementen durch die Diagonalstrebe geleitet werden, und erzeugt folglich ein Moment außerhalb der Ebene in der Diagonalstrebe. Daher ist eine seitliche Versteifung vorgesehen, um zu verhindern, dass die auf den Diagonalstreben zentrierten Zwickel und ihre Schweißnähte durch Biegung außerhalb der Ebene belastet werden.

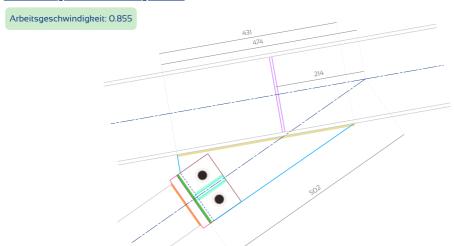
Linke Diagonalstrebe - Seite der Stütze

Zwickel an der Diagonalstrebe	Dicke tb.g	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der Diagonalstrebe	Dicke the	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,p
befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke t	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schwe	ßnaht a,os,g
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm	4 mm	
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände _{P2}	Randabstand e ₂	Entfernung beenden e
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
Stegversteifungen	Dicke x Breite	Seitliche	Dicke 1 _{ks,g}	Breite bls.g	Höhe h _{ls.g}	Schweißnaht a,ls,g
Siegverstellungen	8 mm x 90 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm


<u>Linke Diagonalstrebe - Riegel Seite</u>

Zwickel an der Diagonalstrebe	Dicke tbg	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der Diagonalstrebe	Dicke the	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,p
befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke t	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schwe	ßnaht a,os,g
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm	4 mm	
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände _{P2}	Randabstand e2	Entfernung beenden e
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
Stegversteifungen	Dicke x Breite	Seitliche	Dicke 1 _{ks,g}	Breite bls.g	Höhe h _{ls.g}	Schweißnaht a,ls,g
Stegverstellungen	6 mm x 40 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm

Rechte Diagonalstrebe - Seite der Stütze


Arbeitsgeschwindigkeit: 0.858

Winkel zwischen den Elementen = 54.9°

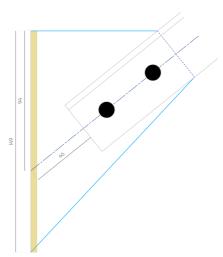
Zwickel an der Diagonalstrebe	Dicke tb.g	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der Diagonalstrebe	Dicke the	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,p
befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke t	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schweißnaht a,os,g	
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm	4 _{mm}	
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände _{P2}	Randabstand e ₂	Entfernung beenden e
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
Stegversteifungen	Dicke x Breite	Seitliche	Dicke 1 _{k.g}	Breite bls.g	Höhe h _{ls.g}	Schweißnaht a,ls,g
Stegverstellungen	8 mm x 90 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm

Rechte Diagonalstrebe - Riegel Seite

Winkel zwischen den Elementen = 25.1°

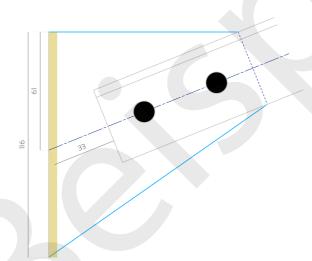
Zwickel an der Diagonalstrebe	Dicke tb.g	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der Diagonalstrebe	Dicke t _{b,p}	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,p
befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke t	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schwei	ißnaht a,os,g
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm	4 mm	
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände _{P2}	Randabstand e ₂	Entfernung beenden e
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
Stegversteifungen	Dicke x Breite	Seitliche	Dicke 1 _{ks,g}	Breite bls.g	Höhe h _{ls,g}	Schweißnaht a,ls,g
Stegverstellungen	6 mm x 40 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm

D 4.4 - Querverstrebungen im Dach


Die Dachebene wird durch den Einbau eines Winkelbinders (Kreuzbinders) in der Ebene des Gefälles versteift.

Die Winkel sind untereinander und mit den Riegeln durch Zwickel verbunden.

Der mittlere Zwickel eines jeden Kreuzes ist an den Zwischenpfetten befestigt.


Diese Zwickel sind mit den Streben durch mehrere Schrauben der Klasse 8.8 verbunden, die durch einfaches Abscheren funktionieren.

Arbeitsgeschwindigkeit: 0.594

Winkel = 38.8°

Flement	Querschnitt	Zwichol	Zwickel Dicke t		Bohrungen do	Schweißnaht a,w
	L40x40x4		5 mm	(Siehe Skizze)	11 mm	3 mm
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der Unterlegscheibe	Randabstand e2	Abstände PI	Entfernung beenden ei
Boizeii	M10 8.8 SB	10 mm	20 mm	20 mm > 13.2 mm	40 mm > 24.2 mm	20 mm > 13.2 mm

Winkel = 21.9°

Element	Querschnitt Zwickel		Dicke t	Abmessungen und Position	Bohrungen do	Schweißnaht a,w
Element	L40x40x4		5 mm	(Siehe Skizze)	11 mm	3 mm
	Bezeichnung	Durchmesser der Schraube d	Durchmesser der Unterlegscheibe	Randabstand e2	Abstände pi	Entfernung beenden ei
Bolzen	M10 8.8 SB	10 mm	20 mm	20 mm > 13.2 mm	40 mm > 24.2 mm	20 mm > 13.2 mm

ANNEXES

ENTWURFSBERICHT ZUR STRUKTURANALYSE

Projet exemple rapport - Exemple de client

Projekt definiert durch : xxx-xxx

E-Mail : contact@eurocodes-tools.com
Letzte Aktualisierung : 2024-12-17 10:16

ANHANG 1 - MERKMALE DES MODELLS

Anhang 1.1 - Knotenpunkte

Knotenpunkt-ID	Koordi	naten	Eingeschränkte Freiheitsgrade	
Knotenpunkt-iD	X	Z	Elligeschlankte Freiheitsgrade	
1	5.594 m	-0.3 m	$U_X U_Z R_Y$	
2	5.594 m	2.5 m		
3	5.594 m	4.475 m		
4	0.719 m	3.616 m		
5	10.607 m	5.359 m		
6	1.938 m	3.831 m		
7	9.354 m	5.138 m		

Anhang 1.2 - Elemente

Element-Id	Start-Knoten	Knoten beenden	Länge	Querschnitt	Randbedingungen
1	1	2	2.8 m	IPE500	
2	2	3	1.975 m	IPE500	Am Endknoten angeheftet
3	4	6	1.237 m	IPE200	
4	6	3	3.712 m	IPE200	
5	3	7	3.818 m	IPE200	
6	7	5	1.273 m	IPE200	
7	6	2	3.89 m	□ 120x3	Angeheftet an Start- und Endknoten
8	2	7	4.593 m	□ 120x4	Angeheftet an Start- und Endknoten

Anhang 1.3 - Querschnitte und Materialien

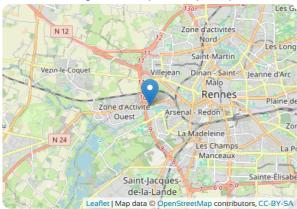
Ouerschnitt	Bruttofläche A	Scherf	lächen	Zweite Mome	nte der Fläche	Polares Trägheitsmoment Io	Torsionskonstante l	Verzugskonstante lw	
Queiscillitt	Bruttoriacrie A	auf y-y A _{vY}	auf z-z A _{vZ}	über y-y l _Y	über z-z l _Z	rolates fragileitsmoment io	TOISIONSKONStante I _t	verzugskonstante i _w	
IPE500	115.5 cm²	72.1 cm ²	59.9 cm²	48198.5 cm ⁴	2141.7 cm ⁴	50340.2 cm ⁴	89.29 cm ⁴	1249.37 x 10 ³ cm ⁶	
IPE200	28.5 cm ²	19.6 cm²	14.0 cm ²	1943.2 cm ⁴	142.4 cm ⁴	2085.5 cm ⁴	6.98 cm ⁴	12.99 x 10 ³ cm ⁶	
□ 120x3	13.8 cm ²	6.9 cm ²	6.9 cm²	312.3 cm ⁴	312.3 cm ⁴	624.7 cm ⁴	487.72 cm ⁴	-	
□ 120x4	18.1 cm ²	9.1 cm ²	9.1 cm ²	402.3 cm ⁴	402.3 cm ⁴	804.6 cm ⁴	636.57 cm ⁴	-	

Querschnitt	Material	Streckgrenze f _y	Elastizitätsmodul E	Schermodul G
IPE500	S275	275 MPa	210000.0 MPa	80769.2 MPa
IPE200	S275	275 MPa	210000.0 MPa	80769.2 MPa
□ 120x3	S235	235 MPa	210000.0 MPa	80769.2 MPa
□ 120x4	S235	235 MPa	210000.0 MPa	80769.2 MPa

ANHANG 2 - BELASTUNGEN

Anhang 2.1 - Tote Lasten

Name	Тур	Intensität
Eigengewicht von Stahlkonstruktionen	Dichte	7698 daN/m³
Sonnenkollektoren	gleichmäßig verteilte Last	20.0 kg/m²
Pfetten	gleichmäßig verteilte Last	8.0 kg/m ²
Dachrinne	Linienlast an der Unterkante	10.0 kg/m


Anhang 2.2 - Wartungsbedingte Belastungen

Es sind keine Wartungskosten zu berücksichtigen, da es nicht empfehlenswert ist, die Solarmodule zu bewegen.

Anhang 2.3 - Klimatische Belastungen

Anhang 2.3.1 - Standort

Koordinaten im Weltgeodätischen System 1984 (WGS84) :

Adresse: Quai Éric Tabarly, 35043 Rennes, Bretagne

48.10711776 - . -1.71473623

Anhang 2.3.2 - Höhenlagen

Entfernungen / Richtung	Am Ort der Errichtung	500 m	1000 m
Norden		32 m	40 m
Nordost		33 m	43 m
Ost		24 m	24 m
Südost	26 m	24 m	30 m
Süd		25 m	30 m
Südwest		23 m	25 m
West		26 m	26 m
Nordwest		29 m	39 m

Quelle : European digital elevation model Copernicus 25m

Anhang 2.3.3 - Bauwerk

Art des Bauwerks : gemeinsame Struktur

Kategorie der Nutzungsdauer: 50 Jahre Maximale Höhe: 5.986 m Orientierung von Norden: 69

Anhang 2.3.4 - Terrain-Kategorien

Sektoren	sl	s2	s3	s 4
Kategorien	IV	IIIb	IIIb	IIIb

Radius R des Winkelsektors : 300 m

Anhang 2.3.5 - Schnee (NF EN 1991-1-3/NA (05/2007) + AI (07/2011))

Anhang 2.3.5.1 - Auf dem Boden

Zone: Al $(s_{k,0} = 0.45 \, \text{kN/m}^2)$ Kriterien für die Zoneneinteilung :ILLE-ET-VILAINE (35)

Charakteristischer Wert des Schnees auf dem Boden an dem betreffenden Standort :Sib 26 m = 0.45 kk/m²

Bodenschneelast mit einer Wiederkehrperiode von 50 Jahren :550 Jahren = 0.45 kN/m²

Anhang 2.3.5.2 - Auf dem Dach

Name	Тур	Charakteristischer Wert	Dachformfaktor	Bemessungswert (horizontale Projektion)
Normaler Schnee	gleichmäßig verteilte Last	45.0 daN/m²	0.8	35.45 daN/m²

Anhang 2.3.6 - Wind (NF EN 1991-1-4/NA (03/2008) + A1 (07/2011) + A2 (09/2012) + A3 (04/2019))

Anhang 2.3.6.1 - Wind - Spitzengeschwindigkeitsdruck

Zone: 2 $(v_{b,0} = 24.0 \text{ m/s})$ Kriterien für die Zoneneinteilung: ILLE-ET-VILAINE (35) Zone c_{dir} :

Sektoren	sl	s2	s3	s4	
Definition des Sektors	von 24 · bis 114 ·	von 114 · bis 204 ·	von 204 · bis 294 ·	von 294 · bis 24	
Fundamentaler Wert der Basiswindgeschwindigkeit v _{b,0}	24.0 m/s				
Parameter der Form K		C	0.2		
Exponent n).5		
Jährliche Überschreitungswahrscheinlichkeit p		0	02		
Wahrscheinlichkeitsfaktor c _{prob}		1	.0		
Richtungsfaktor c _{dir}	1.0	1.0	1.0	1.0	
Grundlegende Windgeschwindigkeit v _b	24.0 m/s	24.0 m/s	24.0 m/s	24.0 m/s	
Referenz-Rauheitslänge z _{O,ll}		0.0	D5 m		
Rauhigkeitslänge z ₀	1.0 m	0.5 m	0.5 m	0.5 m	
Faktor Terrain k _r	0.234	0.223	0.223	0.223	
Höhe über dem Boden z	5.986 m				
Minimale Höhe z _{min}	15.0 m	9.0 m	9.0 m	9.0 m	
Rauhigkeitsfaktor c _{r(z)}	0.635	0.645	0.645	0.645	
Orographie-Faktor [*] c _{o(z)}	1.0	1.0	1.0	1.0	
Mittlere Windgeschwindigkeit v _{m(z)}	15.2 m/s	15.5 m/s	15.5 m/s	15.5 m/s	
Turbulenzfaktor k _l	0.854	0.923	0.923	0.923	
Standardabweichung der Turbulenz σ_{v}	4.804 m/s	4.943 m/s	4.943 m/s	4.943 m/s	
Intensität der Turbulenz I _{v(z)}	0.315	0.319	0.319	0.319	
Luftdichte ρ	1.225 kg/m ³				
Expositionsfaktor C _{e(z)}	1.292	1.347	1.347	1.347	
Spitzengeschwindigkeitsdruck $q_{P(z)}$	455.8 N/m²	475.1 N/m²	475.1 N/m²	475.1 N/m²	
Spitzenwindgeschwindigkeit für Grenzzustände der Gebrauchstauglichkeit $v_{p(z),\text{SLS}} \label{eq:proposition}$	98.2 km/h	100.3 km/h	100.3 km/h	100.3 km/h	
Spitzenwindgeschwindigkeit für Ultimate Limit States v _{b(7) UI} S	120.3 km/h	122.8 km/h	122.8 km/h	122.8 km/h	

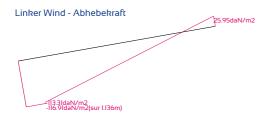
^{*} Ici, le coefficient d'orographie est calculé selon la procédure I, pour une orographie constituée d'obstacles de hauteurs et de formes variées. Ce type d'orographie est le plus fréquemment rencontré, mais si le bâtiment est dans un cas d'orographie constitué d'obstacles bien individualisés (collines isolées ou en chaîne, falaises et escarpements), le coefficient d'orographie doit être calculé selon la procédure 2.Conformément à EN 1991-1-4 \$4.3.3(I), le coefficient d'orographie calculé (I.0) n'est pas pris en compte car il n'augmente pas les vitesses du vent de plus de 5%.

Wind von links (Dachrinne) q _{pl}	Wind von rechts (Kamm) q _{p2}	Wind von vorne q _{p3}	Wind von hinten q _{p4}
47.51 daN/m²	45.58 daN/m²	47.51 daN/m²	47.51 daN/m²

Anhang 2.3.6.2 - Grad der Verstopfung unter dem Dach

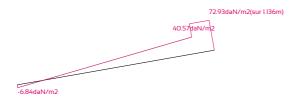
Fahrzeugtyp		Zahl über Länge P _L	Gesichtsbereich	Gesamtfläche der Verstopfung
Parken	Farirzeugtyp	18	3.36 m²/Fahrzeug	60.48 m²
raikeii		Anzahl über Breite P _B	Profilbereich	Gesamtfläche der Verstopfung
		2	7.14 m²/Fahrzeug	14.28 m ²

Position	Blockierungsbereich	Querschnittsfläche unter dem Vordach	Grad der Obstruktion φ
Links	60.48 m ²	176.05 m²	0.344
Rechts	60.48 m ²	265.22 m²	0.228
Profil	14.28 m²	54.61 m²	0.261


Anhang 2.3.6.3 - Flächenpressungen auf dem Dach

(EN 1991-1-4 §7.3 + cf distribution à partir de BNCM/CNC2M NO380 / REC EC1-CM : juillet 2017 Figure 22)

Linker Wind - Durchhängen



Kraftkoeffizient c _f	0.5	Tabelle 7.6
Standort von c _f	2.84 m	Abbildung 7.16

Kraftkoeffizient c _f	-1.072	Tabelle 7.6
Standort von c _f	2.84 m	Abbildung 7.16

Rechtswind - Durchhang

Kraftkoeffizient c _f	0.5	Tabelle 7.6
Standort von c _f	8.52 m	Abbildung 7.16

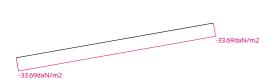
Rechtswind - Auftrieb


Kraftkoeffizient $c_{\rm f}$	-1.072	Tabelle 7.6
Standort von c _f	8.52 m	Abbildung 7.16

Vorderer Wind - Durchhang

Kraftkoeffizient c _f	0.2	pour une pente de toit α = 0° - BNCM/CNC2M NO380 / REC ECI-CM: Juillét 2017 Tableau 3
Standort von c _f	5.68 m	cf est uniforme sur tout le toit - BNCM/CNC2M NO380 / REC ECI-CM: Juillet 2017 553

Frontalwind - Auftrieb


Kraftkoeffizient C _f	-0.709	pour une pente de toit α = 0* - BNCM/CNC2M NO380 / REC ECI-CM: Juillet 2017 Tableau 3
Standort von c _f	5.68 m	cf est uniforme sur tout le toit - BNCM/CNC2M N0380 / REC ECI-CM: Juillet 2017 853

Rückenwind - Durchhang

Kraftkoeffizient	0.2	pour une pente de toit α = 0° - BNCM/CNC2M NO380 / REC ECI-CM:		
Cf		Juillet 2017 Tableau 3		
Standort von c _f	5.68 m	cf est uniforme sur tout le toit - BNCM/CNC2M N0380 / REC ECI-CM: Juillet 2017 \$5.3		

Rückenwind - Auftrieb

Kraftkoeffizient	-0.709	pour une pente de toit α = 0° - BNCM/CNC2M NO380 / REC ECI-CM:
Cf		Juillet 2017 Tableau 3
Standort von c _f	5.68 m	cf est uniforme sur tout le toit - BNCM/CNC2M N0380 / REC ECI-CM: Juillet 2017 553

Anhang 2.3.6.4 - Reibung an den Elementen

	Stütze		Riegel		Linke Diagonalstrebe		Rechte Diagonalstrebe		Dachfläche	
Lastfall	Cf,Spalte	Q Spalte	Cf,Riegel	Q Riegel	Cf,linke Diagonalstrebe	Q linke Diagonalstrebe	Cf,rechte Diagonalstrebe	G rechte Diagonalstrebe	C _{fr,Dach}	q Dach
Linker Wind - Durchhängen	0.85	20.2 daN/m	-	-	-	-	-	-	-	-
Linker Wind - Abhebekraft	0.85	20.2 daN/m	-	-	-	-	-	-	-	-
Rechtswind - Durchhang	0.85	-19.4 daN/m	-	-	-	-	-	-	-	-
Rechtswind - Auftrieb	0.85	-19.4 daN/m	-	-	-	-	-	-	-	-
Vorderer Wind - Durchhang	2.0	47.5 daN/m	1.749	16.6 daN/m	1.84	10.5 daN/m	1.75	10.0 daN/m	0.05	17.9 daN/m
Frontalwind - Auftrieb	2.0	47.5 daN/m	1.749	16.6 daN/m	1.84	10.5 daN/m	1.75	10.0 daN/m	0.05	17.9 daN/m
Rückenwind - Durchhang	2.0	-47.5 daN/m	1.749	-16.6 daN/m	1.84	-10.5 daN/m	1.75	-10.0 daN/m	0.05	-17.9 daN/m
Rückenwind - Auftrieb	2.0	-47.5 daN/m	1.749	-16.6 daN/m	1.84	-10.5 daN/m	1.75	-10.0 daN/m	0.05	-17.9 daN/m

$\underline{Anhang~2.3.6.5-Struktureller~Faktor~c_{s}c_{d}}~(\underline{NF~EN~1991-1-4/NA~(03/2008)~56})$

Der strukturelle Faktor $c_s c_d$ sollte die Auswirkung auf die Windeinwirkung durch das nicht gleichzeitige Auftreten von Windspitzen auf der Oberfläche (c_s) zusammen mit der Auswirkung der Schwingungen der Struktur aufgrund von Turbulenzen (c_d) berücksichtigen.

Lastfall	Linker Wind - Durchhängen	Linker Wind - Abhebekraft	Rechtswind - Durchhang	Rechtswind - Auftrieb	Referenznorm
Turbulente Längenskala L(z _s)	41.83 m	41.83 m	52.89 m	52.89 m	§B.1(1)
Hintergrundfaktor B ²	0.494	0.494	0.531	0.531	§B.2(2)
Eigenfrequenz der Struktur n _{l,x}		3.531+	łz		-
Dimensionsunabhängige Frequenz f _{L(zs,nlx)}	9.529	9.529	12.289	12.289	
Nichtdimensionale spektrale Leistungsdichtefunktion $S_{L(zs,n x)}$	0.031	0.031	0.026	0.026	§B.1(2)
η_{h}	6.588	6.588	6.718	6.718	
Aerodynamische Admittanzfunktion R _h	0.14	0.14	0.138	0.138	SD 2(4)
η_b	47.37	47.37	48.305	48.305	§B.2(6)
Aerodynamische Admittanzfunktion R _b	0.021	0.021	0.02	0.02	
Logarithmisches Dekrement der strukturellen Dämpfung $$\delta_{\text{s}}$$		0.05			Tabelle F.2
Masse pro Flächeneinheit der Struktur µ		37.0 kg	/m²		-
Äquivalente Masse pro Einheit der Frontfläche (H _s .L) μ _e		209.9 k	g/m ²		§F.5(3)
Luftdichte ρ		1.225 kg/	/m³		§4.5
Logarithmische Verringerung der aerodynamischen $\text{Dämpfung } \delta_a$	0.006	0.014	0.006	0.013	§F.5(4)
Logarithmisches Dekrement der Dämpfung δ	0.056	0.064	0.056	0.063	§F.5(1)
Rückkopplungsfaktor R ²	0.008	0.007	0.007	0.006	§B.2(5)
Frequenz der Aufwärtskreuzung v	O.445 Hz	0.419 Hz	O.389 Hz	0.366 Hz	§B.2(4)
Peak-Faktor k _p	3.522	3.505	3.484	3.467	§B.2(3)
Struktureller Faktor c _s c _d	0.85	0.85	0.85	0.85	\$6.3.1(1)

Der Strukturfaktor $c_s c_d$ ist für die anderen Windrichtungen gleich 1,0.

Anhang 2.4 - Thermische Maßnahmen (NF EN 1991-1-5/NA (02/2008))

Anhang 2.4.1 - Temperaturen

Jahreszeiten	Schattige Luft	Innere Umgebung Tin \$53	Äußere Umgebung T _{out Tabelle 52}	Umgebungen Durchschnittswerte 653(1) Hinweis 2	Anfangstemperatur T _{O Anhang A.I}	Einheitliche Temperaturkomponenten von Pfetten $\Delta T_{u} \ \ \text{Gleichung 5.1}$
Winter	-15 •c	-15 •c	-15 °c	-15.0 ℃	- 10 °c	-25.0 ℃
Sommer	35 ⋅c	35 ⋅c	45 °C (dunkle Oberfläche: + 10°C)	40.0 ℃		+30.0 ℃

Anhang 2.4.2 - Erweiterung

		Freiraum für Pfettenbohrungen	Klampensteg-Bohrungsabstand	Dehnungsfähigkeit nach Spannweite
Koeffizient der linearen Ausdehnung α _T	12 ×10°6/°C	+/-1 _{mm}	+/-1 _{mm}	+/-4 _{mm}
Tableau CI	12 x10°/°C	Klampenflansch-Bohrungsabstand	Spielraum für Riegelflanschbohrungen	Fugenlose Gesamtbelastbarkeit
		+/-1 mm	+/-1 mm	+/-4 _{mm}

Spannweite	Längsdehnung von Pfetten	Längsdehnung abzüglich Spielraum nach Spannweite	Achse	Kumulierte Summen der Längsdehnungen	Dehnungsfugen	Kumulierte Summen mit Dehnungsfugen
1	-3.0 mm / +3.6 mm	0.0 mm / +0.0 mm	2	0.0 mm / +0.0 mm	-	0.0 mm / +0.0 mm
2	-3.0 mm / +3.6 mm	0.0 mm / +0.0 mm	3	0.0 mm / +0.0 mm	-	0.0 mm / +0.0 mm
3	-1.5 mm / +1.8 mm	0.0 mm / +0.0 mm	4	0.0 mm / +0.0 mm	-	0.0 mm / +0.0 mm
4	-3.0 mm / +3.6 mm	0.0 mm / +0.0 mm	5	0.0 mm / +0.0 mm	-	0.0 mm / +0.0 mm
5	-3.0 mm / +3.6 mm	0.0 mm / +0.0 mm	6	0.0 mm / +0.0 mm	4	0.0 mm / +0.0 mm

Anhang 2.5.1 - Daten zur Konstruktion

Zone : 2 $(a_{gR} = 0.7 \, \text{m/s}^2)$ Kriterien für die Zoneneinteilung :ILLE-ET-VILAINE (35)

Vom Bauherrn festgelegte Wichtigkeitskategorie: I - Bauwerke mit geringer Bedeutung für den Schutz der Allgemeinheit, mit geringem Personenverkehr (z. B. Scheunen, Kulturgewächshäuser, usw.)

Anhang 2.5.2 - Bedingung für die seismische Überprüfung

In Frankreich ist für Gebäude der Bedeutungskategorie I keine seismische Analyse erforderlich.

Anhang 2.6 - Lädt Tabellen

Anhang 2.6.1 - Belastungen durch Eigengewicht (G)

Element-Id		Verteilte Lasten (einschließlic	h einer Erhöhung um 10% zur Berü	cksichtigung von Montageteilen)	
iement-id	System	Abszisse	q _X	q _Y	qz
1	weltweit	0.0 m	O.O daN/m	O daN/m	-97.8 daN/m
i weitweit	weitweit	2.8 m	O.O daN/m	O daN/m	-97.8 daN/m
	weltweit	0.0 m	O.O daN/m	O daN/m	-97.8 daN/m
2	weitweit	1.975 m	O.O daN/m	O daN/m	-97.8 daN/m
2		0.0 m	O.O daN/m	O daN/m	-24.1 daN/m
3 weltweit	1.237 m	O.O daN/m	O daN/m	-24.1 daN/m	
		0.0 m	O.O daN/m	O daN/m	-24.1 daN/m
4 weltweit	3.712 m	O.O daN/m	O daN/m	-24.1 daN/m	
5		0.0 m	O.O daN/m	O daN/m	-24.1 daN/m
5	weltweit	3.818 m	O.O daN/m	O daN/m	-24.1 daN/m
6	weltweit	0.0 m	O.O daN/m	O daN/m	-24.1 daN/m
О	weitweit	1.273 m	O.O daN/m	O daN/m	-24.1 daN/m
7	weltweit	0.0 m	O.O daN/m	O daN/m	-11.7 daN/m
7 weltweit	3.89 m	O.O daN/m	O daN/m	-11.7 daN/m	
0	weltweit	0.0 m	O.O daN/m	O daN/m	-15.4 daN/m
8	weitweit	4.593 m	O.O daN/m	O daN/m	-15.4 daN/m

Anhang 2.6.2 - Geballte Ladung

Element-ld			Lädt		
Element-Id	System	Abszisse	F _X	F _Z	C _Y
		Ständige La	sten (G)		
1	weltweit	0.028 m	O.O daN	-217.2 daN	O.O m.daN
3	weltweit	O.O m	4.3 daN	-680.2 daN	-45.6 m.daN
4	weltweit	O.771 m	-5.5 daN	-618.2 daN	-45.1 m.daN
4	weltweit	2.779 m	1.8 daN	-659.7 daN	-45.1 m.daN
5	weltweit	1.075 m	-1.8 _{daN}	-639.3 daN	-45.1 m.daN
5	weltweit	3.083 m	5.3 daN	-679.6 daN	-45.1 m.daN
6	weltweit	1.273 m	-4.1 _{daN}	-514.6 daN	-37.4 m.daN
		Normaler Sci	nnee (Sn)		
3	weltweit	O.O m	-5.3 daN	-664.7 daN	-48.3 m.daN
4	weltweit	0.771 m	6.6 daN	-876.1 daN	-58.2 m.daN
4	weltweit	2.779 m	-1.3 daN	-830.9 daN	-58.2 m.daN
5	weltweit	1.075 m	-1.3 daN	-830.9 daN	-58.2 m.daN
5	weltweit	3.083 m	6.6 daN	-876.1 daN	-58.2 m.daN
6	weltweit	1.273 m	-5.3 daN	-664.7 daN	-48.3 m.daN
		Unbeabsichtigte	Schnee (Sa)		
		Durchhängen des lin	ken Windes (WI-)		
3	weltweit	O.O m	186.8 daN	-1059.6 daN	-0.0 m.daN
4	weltweit	O.771 m	124.7 daN	-707.3 daN	O.O m.daN
4	weltweit	2.779 m	87.1 daN	-494.1 daN	O.O m.daN
5	weltweit	1.075 m	54.2 daN	-307.5 daN	O.O m.daN
3	weltweit	3.083 m	20.1 daN	-113.9 daN	O.O m.daN
6	weltweit	1.273 m	-10.4 daN	58.9 daN	O.O m.daN
		Abhebekraft des link	en Windes (WI+)		
3	weltweit	0.0 m	-319.2 daN	1810.0 daN	-0.0 m.daN
4	weltweit	0.771 m	-343.5 daN	1948.3 daN	-0.0 m.daN
-	weltweit	2.779 m	-221.6 daN	1256.7 daN	-0.0 m.daN
5	weltweit	1.075 m	-133.5 daN	757.1 daN	-0.0 m.daN
3	weltweit	3.083 m	-34.9 daN	198.1 daN	-0.0 m.daN
6	weltweit	1.273 m	45.4 daN	-257.7 daN	-0.0 m.daN
		Durchhängen des rec	hten Windes (Wr-)		
3	weltweit	0.0 m	-10.0 daN	56.5 daN	O.O m.daN
4	weltweit	O.771 m	19.3 daN	-109.2 daN	0.0 m.daN
4	weltweit	2.779 m	52.0 daN	-295.0 daN	O.O m.daN
5	weltweit	1.075 m	83.6 daN	-474.0 daN	O.O m.daN
5	weltweit	3.083 m	119.6 daN	-678.5 daN	0.0 m.daN

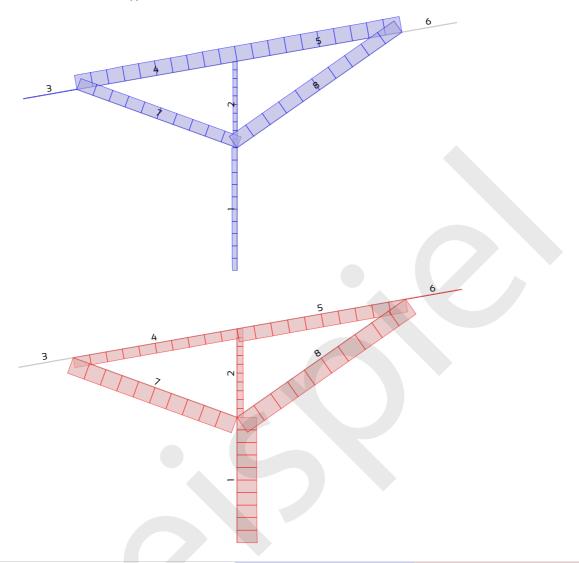
E1			Lädt		
Element-Id	System	Abszisse	F _X	Fz	C _Y
6	weltweit	1.273 m	179.2 daN	-1016.5 daN	-0.0 m.daN
		Abhebekraft des rech	ten Windes (Wr+)		
3	weltweit	O.O m	43.6 daN	-247.2 daN	-0.0 m.daN
,	weltweit	0.771 m	-33.5 daN	190.1 daN	-0.0 m.daN
4	weltweit	2.779 m	-128.1 daN	726.4 daN	-0.0 m.daN
	weltweit	1.075 m	-212.6 daN	1205.7 daN	-0.0 m.daN
5	weltweit	3.083 m	-329.6 daN	1869.1 daN	-0.0 m.daN
6	weltweit	1.273 m	-306.2 daN	1736.5 daN	-0.0 m.daN
		Durchhängen des Vor	derer Windes (Wf-)		
3	weltweit	0.0 m	30.9 daN	-175.2 daN	O.O m.daN
,	weltweit	0.771 m	40.8 daN	-231.6 daN	O.O m.daN
4	weltweit	2.779 m	38.7 daN	-219.3 daN	O.O m.daN
-	weltweit	1.075 m	38.7 daN	-219.3 daN	O.O m.daN
5	weltweit	3.083 m	40.8 daN	-231.6 daN	O.O m.daN
6	weltweit	1.273 m	30.9 daN	-175.2 daN	O.O m.daN
		Abhebekraft des Vord	lerer Windes (Wf+)		
3	weltweit	0.0 m	-109.5 daN	621.3 daN	-0.0 m.daN
4	weltweit	0.771 m	-144.8 daN	821.1 daN	-0.0 m.daN
	weltweit	2.779 m	-137.1 daN	777.5 daN	-0.0 m.daN
_	weltweit	1.075 m	-137.1 daN	777.5 daN	-0.0 m.daN
5	weltweit	3.083 m	-144.8 daN	821.1 daN	-0.0 m.daN
6	weltweit	1.273 m	-109.5 daN	621.3 daN	-0.0 m.daN
		Rückenwind in Dui	rchhänge (Wb-)		
3	weltweit	0.0 m	30.9 daN	-175.2 daN	O.O m.daN
	weltweit	0.771 m	40.8 daN	-231.6 daN	O.O m.daN
4	weltweit	2.779 m	38.7 daN	-219.3 daN	O.O m.daN
_	weltweit	1.075 m	38.7 daN	-219.3 daN	O.O m.daN
5	weltweit	3.083 m	40.8 daN	-231.6 daN	O.O m.daN
6	weltweit	1.273 m	30.9 daN	-175.2 daN	O.O m.daN
		Rückenwind im A	ufwind (Wb+)		
3	weltweit	0.0 m	-109.5 daN	621.3 daN	-0.0 m.daN
,	weltweit	0.771 m	-144.8 daN	821.1 daN	-0.0 m.daN
4	weltweit	2.779 m	-137.1 daN	777.5 daN	-0.0 m.daN
_	weltweit	1.075 m	-137.1 daN	777.5 daN	-0.0 m.daN
5	weltweit	3.083 m	-144.8 daN	821.1 daN	-0.0 m.daN
6	weltweit	1.273 m	-109.5 daN	621.3 daN	-0.0 m.daN
		Erdbeben au	FX+ (EX+)		
		Erdbeben au			
		Erdbeben au	fY+ (EY+)		

Erdbeben auf Y- (EY-)

Anhang 2.7 - Belastungskombinationen (NF EN 1990/NA (12/2011))

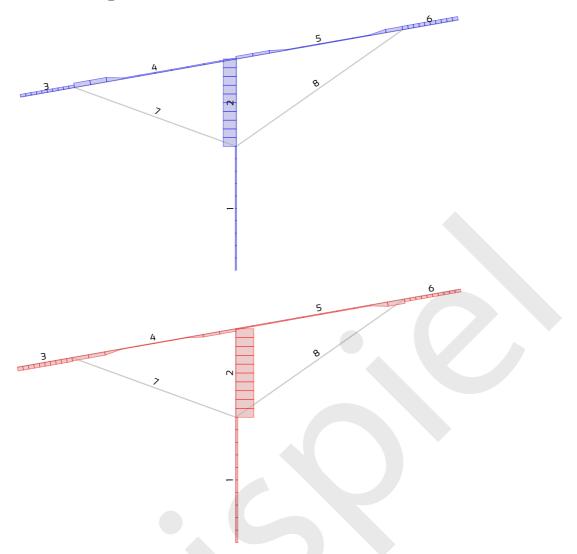
Anhang 2.7.1 - Ultimative Grenzzustände

ld	Kombination	Yмо	Υмι	У М2
ULS 1	G	1.0	1.0	1.25
ULS 2	1.35 G	1.0	1.0	1.25
ULS 3	G + 1.5 S	1.0	1.0	1.25
ULS 4	1.35 G + 1.5 S	1.0	1.0	1.25
ULS 5	G + 1.5 (S + 0.6 WI-)	1.0	1.0	1.25
ULS 6	1.35 G + 1.5 (S + 0.6 WI-)	1.0	1.0	1.25
ULS 7	G + 1.5 (S + 0.6 WI+)	1.0	1.0	1.25
ULS 8	1.35 G + 1.5 (S + 0.6 WI+)	1.0	1.0	1.25
ULS 9	G + 1.5 (S + 0.6 Wr-)	1.0	1.0	1.25
ULS 10	1.35 G + 1.5 (S + 0.6 Wr-)	1.0	1.0	1.25
ULS 11	G + 1.5 (S + 0.6 Wr+)	1.0	1.0	1.25
ULS 12	1.35 G + 1.5 (S + 0.6 Wr+)	1.0	1.0	1.25
ULS 13	G + 1.5 (S + 0.6 Wf-)	1.0	1.0	1.25
ULS 14	1.35 G + 1.5 (S + 0.6 Wf-)	1.0	1.0	1.25
ULS 15	G + 1.5 (S + 0.6 Wf+)	1.0	1.0	1.25
ULS 16	1.35 G + 1.5 (S + 0.6 Wf+)	1.0	1.0	1.25
ULS 17	G + 1.5 (S + 0.6 Wb-)	1.0	1.0	1.25
ULS 18	1.35 G + 1.5 (S + 0.6 Wb-)	1.0	1.0	1.25
ULS 19	G + 1.5 (S + 0.6 Wb+)	1.0	1.0	1.25
ULS 20	1.35 G + 1.5 (S + 0.6 Wb+)	1.0	1.0	1.25
ULS 21	G + 1.5 WI-	1.0	1.0	1.25
ULS 22	1.35 G + 1.5 WI-	1.0	1.0	1.25
ULS 23	G + 1.5 (WI- + 0.5 * S)	1.0	1.0	1.25
ULS 24	1.35 G + 1.5 (WI- + 0.5 * S)	1.0	1.0	1.25
ULS 25	G + 1.5 WI+	1.0	1.0	1.25
ULS 26	1.35 G + 1.5 WI+	1.0	1.0	1.25
ULS 27	G + 1.5 (WI+ + 0.5 * S)	1.0	1.0	1.25
ULS 28	1.35 G + 1.5 (WI+ + 0.5 * S)	1.0	1.0	1.25
ULS 29	G + 1.5 Wr-	1.0	1.0	1.25
ULS 30	1.35 G + 1.5 Wr-	1.0	1.0	1.25
ULS 31	G + 1.5 (Wr- + 0.5 * S)	1.0	1.0	1.25
ULS 32	1.35 G + 1.5 (Wr- + 0.5 * S)	1.0	1.0	1.25
ULS 33	G + 1.5 Wr+	1.0	1.0	1.25
ULS 34	1.35 G + 1.5 Wr+	1.0	1.0	1.25
ULS 35	G + 1.5 (Wr+ + 0.5 * S)	1.0	1.0	1.25
ULS 36	1.35 G + 1.5 (Wr+ + 0.5 * S)	1.0	1.0	1.25
ULS 37	G + 1.5 Wf-	1.0	1.0	1.25
ULS 38	1.35 G + 1.5 Wf-	1.0	1.0	1.25
ULS 39	G + 1.5 (Wf- + 0.5 * S)	1.0	1.0	1.25
ULS 40	1.35 G + 1.5 (Wf- + 0.5 * S)	1.0	1.0	1.25
ULS 41	G + 1.5 Wf+	1.0	1.0	1.25
ULS 42	1.35 G + 1.5 Wf+	1.0	1.0	1.25
ULS 43	G + 1.5 (Wf+ + 0.5 * S)	1.0	1.0	1.25
ULS 44	1.35 G + 1.5 (Wf+ + 0.5 * S)	1.0	1.0	1.25
ULS 45	G + 1.5 Wb-	1.0	1.0	1.25
ULS 46	1.35 G + 1.5 Wb-	1.0	1.0	1.25
ULS 47	G + 1.5 (Wb- + 0.5 * S)	1.0	1.0	1.25
ULS 48	1.35 G + 1.5 (Wb- + 0.5 * S)	1.0	1.0	1.25
ULS 49	G + 1.5 Wb+	1.0	1.0	1.25
ULS 50	1.35 G + 1.5 Wb+	1.0	1.0	1.25
ULS 51	G + 1.5 (Wb+ + 0.5 * S)	1.0	1.0	1.25
	1.35 G + 1.5 (Wb+ + 0.5 * S)			
ULS 52	· · · · · · · · · · · · · · · · · · ·	1.0	1.0	1.25
ULS 53	G + Sa	1.0	1.0	1.25

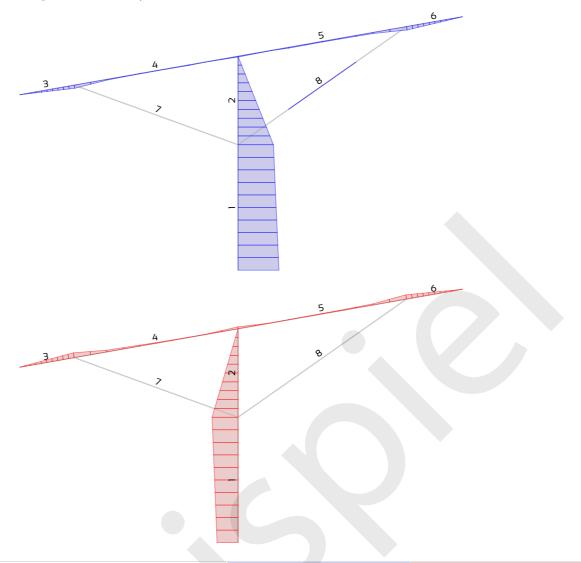

Anhang 2.7.2 - Grenzzustände der Gebrauchstauglichkeit

Id	Kombination
SLS 1	G
SLS 2	G + S
SLS 3	G + S + 0.6 WI-
SLS 4	G + S + 0.6 WI+
SLS 5	G + S + 0.6 Wr-
SLS 6	G + S + 0.6 Wr+
SLS 7	G + S + 0.6 Wf-
SLS 8	G + S + 0.6 Wf+
SLS 9	G + S + 0.6 Wb-
SLS 10	G + S + 0.6 Wb+
SLS 11	G + WI-
SLS 12	G + WI- + 0.5 * S
SLS 13	G + WI+
SLS 14	G + WI+ + 0.5 * S
SLS 15	G + Wr-
SLS 16	G + Wr- + 0.5 * S
SLS 17	G + Wr+
SLS 18	G + Wr+ + 0.5 * S
SLS 19	G + Wf-
SLS 20	G + Wf- + 0.5 * S
SLS 21	G + Wf+
SLS 22	G + Wf+ + 0.5 * S
SLS 23	G + Wb-
SLS 24	G + Wb- + 0.5 * S
SLS 25	G + Wb+
SLS 26	G + Wb+ + 0.5 * S

ANHANG 3 - MECHANISCHE BERECHNUNGSERGEBNISSE


Beim Berechnen werden die Posten durch 10 geteilt.

Anhang 3.1 - Normale Kräfte N_X


Element (Id)	N _{X,max} (Spannung)	$N_{X,min}$ (Kompression)
Stütze - unterer Teil (1)	4225.7 daN (ULS 25)	-16002.5 daN (ULS 6)
Stütze - oberer Teil (2)	3446.1 daN (ULS 25)	-4968.5 daN (ULS 6)
DachRiegel - freitragend (3)	341.7 daN (ULS 10)	-
Riegel - Spannweite (4)	12335.7 daN (ULS 6)	-7956.8 daN (ULS 25)
Riegel - Spannweite (5)	12805.0 daN (ULS 32)	-10416.2 daN (ULS 33)
DachRiegel - freitragend (6)	-	-314.3 daN (ULS 12)
Linke Diagonalstrebe (7)	9337.5 daN (ULS 25)	-12985.8 daN (ULS 24)
Rechte Diagonalstrebe (8)	11136.0 daN (ULS 33)	-14418.7 daN (ULS 32)

Anhang 3.2 - Scherkräfte V_Z

Element (ld)	$V_{Z,max}$	$V_{Z,min}$
Stütze - unterer Teil (1)	838.5 daN (ULS 24)	-1588.3 daN (ULS 33)
Stütze - oberer Teil (2)	10394.5 daN (ULS 25)	-14160.2 daN (ULS 36)
DachRiegel - freitragend (3)	2086.3 daN (ULS 25)	-3049.2 daN (ULS 24)
Riegel - Spannweite (4)	3557.4 daN (ULS 6)	-2648.0 daN (ULS 25)
Riegel - Spannweite (5)	2642.7 daN (ULS 33)	-3409.7 daN (ULS 10)
DachRiegel - freitragend (6)	2762.6 daN (ULS 32)	-2138.8 daN (ULS 33)
Linke Diagonalstrebe (7)	28.9 daN (ULS 30)	-28.9 daN (ULS 30)
Rechte Diagonalstrebe (8)	39.0 daN (ULS 22)	-39.0 daN (ULS 22)

Anhang 3.3 - Biegemomente M_{Y}

Element (Id)	M _{Y,max}	$M_{Y,min}$
Stütze - unterer Teil (1)	32245.1 m.daN (ULS 36)	-20471.6 m.daN (ULS 25)
Stütze - oberer Teil (2)	27911.8 m.daN (ULS 36)	-20471.6 m.daN (ULS 25)
DachRiegel - freitragend (3)	2517.7 m.daN (ULS 25)	-3846.1 m.daN (ULS 24)
Riegel - Spannweite (4)	2517.7 m.daN (ULS 25)	-3846.1 m.daN (ULS 24)
Riegel - Spannweite (5)	2740.0 m.daN (ULS 33)	-3403.2 m.daN (ULS 32)
DachRiegel - freitragend (6)	2740.0 m.daN (ULS 33)	-3403.2 m.daN (ULS 32)
Linke Diagonalstrebe (7)	28.1 m.daN (ULS 2)	-0.0 m.daN
Rechte Diagonalstrebe (8)	44.8 m.daN (ULS 2)	-0.0 m.daN

Anhang 3.4 - Scherkräfte V_Y

Element (Id)	$V_{Y,max}$	$V_{Y,min}$
Stütze - unterer Teil (1)	1003.9 daN (ULS 45)	-1003.9 daN (ULS 37)
Stütze - oberer Teil (2)	760.9 daN (ULS 45)	-760.9 daN (ULS 37)
DachRiegel - freitragend (3)	31.1 daN (ULS 45)	-32.9 daN (ULS 37)
Riegel - Spannweite (4)	328.4 daN (ULS 37)	-329.3 daN (ULS 45)
Riegel - Spannweite (5)	291.3 daN (ULS 45)	-290.4 daN (ULS 37)
DachRiegel - freitragend (6)	33.3 daN (ULS 37)	-31.5 daN (ULS 45)
Linke Diagonalstrebe (7)	30.6 daN (ULS 45)	-30.6 daN (ULS 37)
Rechte Diagonalstrebe (8)	34.4 daN (ULS 45)	-34.4 daN (ULS 37)

Anhang 3.5 - Biegemomente M_Z

Element (Id)	$M_{Z,max}$	M _{Z,min}
Stütze - unterer Teil (1)	4079.9 m.daN (ULS 45)	-4079.9 m.daN (ULS 37)
Stütze - oberer Teil (2)	1491.5 m.daN (ULS 45)	-1491.5 m.daN (ULS 37)
DachRiegel - freitragend (3)	19.4 m.daN (ULS 45)	-21.6 m.daN (ULS 37)
Riegel - Spannweite (4)	233.6 m.daN (ULS 37)	-232.3 m.daN (ULS 45)
Riegel - Spannweite (5)	233.6 m.daN (ULS 37)	-232.3 m.daN (ULS 45)
DachRiegel - freitragend (6)	19.9 m.daN (ULS 45)	-22.2 m.daN (ULS 37)
Linke Diagonalstrebe (7)	129.9 m.daN (ULS 24)	-117.9 m.daN (ULS 18)
Rechte Diagonalstrebe (8)	144.2 m.daN (ULS 32)	-134.0 m.daN (ULS 18)

Anhang 3.6 - Knotenpunktverschiebungen

Anhang 3.6.1 - Horizontale Übersetzungen U_X

Knotenpunk	et .	1	2	3	4	5	6	7
	1	0.0 mm	-0.2 mm	-0.6 mm	O.1 mm	-0.1 mm	-0.5 mm	-0.4 mm
	2	O.O mm	-0.2 mm	-0.6 mm	0.6 mm	0.7 mm	-0.5 mm	O.1 mm
	3	O.O mm	-1.5 mm	-4.3 mm	-1.5 mm	-4.2 mm	-3.4 mm	-4.4 mm
	4	O.O mm	2.6 mm	7.5 mm	5.6 mm	11.4 mm	5.9 mm	10.0 mm
	5	O.O mm	1.9 mm	5.1 mm	4.7 mm	9.0 mm	4.1 mm	7.4 mm
	6	O.O mm	-4.9 mm	-13.1 mm	-8.3 mm	-16.8 mm	-10.3 mm	-15.7 mm
	7	O.O mm	-0.0 mm	-0.1 mm	1.1 mm	1.5 mm	-0.0 mm	0.8 mm
	8	O.O mm	-1.0 mm	-2.5 mm	-1.1 mm	-2.2 mm	-2.0 mm	-2.5 mm
	9	O.O mm	-0.0 mm	-0.1 mm	1.1 mm	1.5 mm	-0.0 mm	0.8 mm
	10	O.O mm	-1.0 mm	-2.5 mm	-1.1 mm	-2.2 mm	-2.0 mm	-2.5 mm
	11	O.O mm	-2.4 mm	-6.8 mm	-3.4 mm	-8.3 mm	-5.3 mm	-7.9 mm
	12	O.O mm	-2.4 mm	-6.8 mm	-3.2 mm	-7.9 mm	-5.3 mm	-7.7 mm
Kombination Id	13	O.O mm	4.5 mm	12.9 mm	8.4 mm	17.8 mm	10.1 mm	16.1 mm
Kombination id	14	O.O mm	4.5 mm	12.9 mm	8.7 mm	18.2 mm	10.1 mm	16.3 mm
	15	O.O mm	3.3 mm	8.9 mm	6.9 mm	13.6 mm	7.1 mm	11.8 mm
	16	O.O mm	3.3 mm	8.9 mm	7.1 mm	14.0 mm	7.1 mm	12.0 mm
	17	O.O mm	-8.0 mm	-21.3 mm	-14.6 mm	-29.3 mm	-17.0 mm	-26.7 mm
	18	0.0 mm	-8.0 mm	-21.3 mm	-14.4 mm	-28.9 mm	-17.0 mm	-26.4 mm
	19	O.O mm	O.1 mm	O.3 mm	0.9 mm	1.2 mm	0.2 mm	O.8 mm
	20	O.O mm	O.1 mm	0.3 mm	1.1 mm	1.7 mm	0.3 mm	1.1 mm
	21	0.0 mm	-1.5 mm	-3.8 mm	-2.6 mm	-5.0 mm	-3.0 mm	-4.6 mm
	22	0.0 mm	-1.5 mm	-3.8 mm	-2.4 mm	-4.6 mm	-3.0 mm	-4.4 mm
	23	0.0 mm	O.1 mm	0.3 mm	0.9 mm	1.2 mm	0.2 mm	0.8 mm
	24	0.0 mm	O.1 mm	0.3 mm	1.1 mm	1.7 mm	0.3 mm	1.1 mm
	25	0.0 mm	-1.5 mm	-3.8 mm	-2.6 mm	-5.0 mm	-3.0 mm	-4.6 mm
	26	0.0 mm	-1.5 mm	-3.8 mm	-2.4 mm	-4.6 mm	-3.0 mm	-4.4 mm

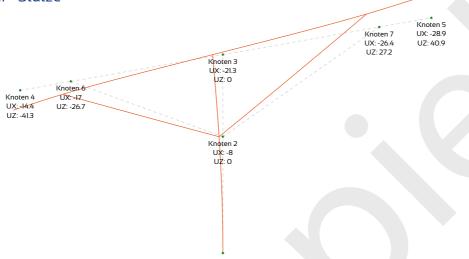
Anhang 3.6.2 - Horizontale Übersetzungen U_{Y}

Knotenpunkt		1	2	3	4	5	6	7
	7	0.0 mm	11.1 mm	26.3 mm	27.9 mm	28.5 mm	28.0 mm	28.5 mm
	8	0.0 mm	11.1 mm	26.3 mm	27.9 mm	28.5 mm	28.0 mm	28.5 mm
	9	0.0 mm	-11.1 mm	-26.3 mm	-27.9 mm	-28.4 mm	-28.0 mm	-28.4 mm
	10	0.0 mm	-11.1 mm	-26.3 mm	-27.9 mm	-28.4 mm	-28.0 mm	-28.4 mm
	19	0.0 mm	18.4 mm	43.8 mm	46.4 mm	47.4 mm	46.7 mm	47.5 mm
Kombination Id	20	0.0 mm	18.4 mm	43.8 mm	46.4 mm	47.4 mm	46.7 mm	47.5 mm
Kombination id	21	0.0 mm	18.4 mm	43.8 mm	46.4 mm	47.4 mm	46.7 mm	47.5 mm
	22	0.0 mm	18.4 mm	43.8 mm	46.4 mm	47.4 mm	46.7 mm	47.5 mm
	23	0.0 mm	-18.4 mm	-43.8 mm	-46.4 mm	-47.4 mm	-46.6 mm	-47.4 mm
	24	0.0 mm	-18.4 mm	-43.8 mm	-46.4 mm	-47.4 mm	-46.6 mm	-47.4 mm
	25	0.0 mm	-18.4 mm	-43.8 mm	-46.4 mm	-47.4 mm	-46.6 mm	-47.4 mm
	26	0.0 mm	-18.4 mm	-43.8 mm	-46.4 mm	-47.4 mm	-46.6 mm	-47.4 mm

Anhang 3.6.3 - Vertikale Übersetzungen U_Z

Knotenpunkt Kombination Id		1	2	3	4	5	6	7
Kombination Id	1	0.0 mm	-O.1 mm	-0.1 mm	-5.3 mm	-1.9 mm	-2.0 mm	-0.5 mm
	2	O.O mm	-O.1 mm	-0.1 mm	-9.2 mm	-5.6 mm	-3.3 mm	-2.0 mm

Knotenpunl	रा	1	2	3	4	5	6	7
	3	O.O mm	-0.1 mm	-0.2 mm	-19.2 mm	1.0 mm	-8.7 mm	2.5 mm
	4	O.O mm	-0.1 mm	-O.1 mm	10.0 mm	-20.4 mm	8.3 mm	-12.1 mm
	5	0.0 mm	-0.1 mm	-0.1 mm	0.0 mm	-19.1 mm	3.3 mm	-10.0 mm
	6	0.0 mm	-0.1 mm	-0.1 mm	-29.6 mm	21.2 mm	-17.7 mm	15.1 mm
	7	0.0 mm	-0.1 mm	-0.1 mm	-9.0 mm	-7.1 mm	-2.9 mm	-2.9 mm
	8	0.0 mm	-0.1 mm	-0.1 mm	-10.0 mm	-0.4 mm	-4.6 mm	1.0 mm
	9	0.0 mm	-0.1 mm	-0.1 mm	-9.0 mm	-7.1 mm	-2.9 mm	-2.9 mm
	10	0.0 mm	-0.1 mm	-0.1 mm	-10.0 mm	-0.4 mm	-4.6 mm	1.0 mm
	11	0.0 mm	-0.1 mm	-0.1 mm	-22.0 mm	9.2 mm	-11.0 mm	7.1 mm
	12	0.0 mm	-0.1 mm	-0.1 mm	-23.9 mm	7.3 mm	-11.6 mm	6.3 mm
	13	0.0 mm	0.0 mm	0.0 mm	26.7 mm	-26.6 mm	17.3 mm	-17.3 mm
	14	0.0 mm	-0.0 mm	-0.0 mm	24.8 mm	-28.4 mm	16.7 mm	-18.0 mm
	15	0.0 mm	-0.1 mm	-0.1 mm	10.1 mm	-24.4 mm	9.0 mm	-13.8 mm
	16	0.0 mm	-0.1 mm	-0.1 mm	8.1 mm	-26.3 mm	8.4 mm	-14.6 mm
	17	0.0 mm	0.0 mm	0.0 mm	-39.3 mm	42.8 mm	-26.1 mm	28.0 mm
	18	0.0 mm	-0.0 mm	-0.0 mm	-41.3 mm	40.9 mm	-26.7 mm	27.2 mm
	19	0.0 mm	-0.1 mm	-0.1 mm	-5.0 mm	-4.4 mm	-1.3 mm	-2.0 mm
	20	0.0 mm	-0.1 mm	-0.1 mm	-7.0 mm	-6.2 mm	-2.0 mm	-2.7 mm
	20	0.0 mm	-0.1 mm	-0.1 mm	-7.0 mm	6.8 mm	-4.2 mm	4.5 mm
	21	0.0 mm	-0.0 mm	-0.0 mm	-8.5 mm	4.9 mm	-4.2 mm	3.8 mm
		0.0 mm	-0.0 mm	-0.0 mm	-6.5 mm	4.9 mm		-2.0 mm
	23	0.0 mm	-O.1 mm	-0.1 mm	-5.0 mm	-4.4 mm	-1.3 mm	-2.0 mm
	24		-0.1 mm	-0.1 mm	-7.0 mm			
	25	0.0 mm	-0.0 mm	-0.0 mm	-6.5 mm	6.8 mm 4.9 mm	-4.2 mm	4.5 mm 3.8 mm
	26	O.O mm	-0.0 mm	-0.0 mm	-6.5 mm	4.9 mm	-4.9 mm	3.0 mm
Knotenpunk	t	1	2	3	4	5	6	7
	1	O.O e ⁻³ rad	-0.2 e ⁻³ rad	O.1 e ⁻³ rad	-3.3 e ⁻³ rad	1.4 e ⁻³ rad	-1.9 e ⁻³ rad	0.5 e ⁻³ rad
	2	O.O e ⁻³ rad	-0.2 e ⁻³ rad	O.2 e ⁻³ rad	-5.9 e ⁻³ rad	3.5 e ⁻³ rad	-3.1 e ⁻³ rad	1.4 e ⁻³ rad
	3	O.O e ⁻³ rad	-1.1 e ⁻³ rad	-0.8 e ³ rad	-10.0 e ⁻³ rad	1.8 e ⁻³ rad	-6.0 e ⁻³ rad	-0.2 e ⁻³ rad
	4	O.O e ⁻³ rad	1.9 e ⁻³ rad	2.8 e ⁻³ rad	1.1 e ⁻³ rad	7.4 e ⁻³ rad	1.8 e ⁻³ rad	5.0 e ⁻³ rad
	5	O.O e ⁻³ rad	1.3 e ⁻³ rad	1.9 e ⁻³ rad	-3.7 e ⁻³ rad	8.3 e ⁻³ rad	-1.0 e ⁻³ rad	5.0 e ⁻³ rad
	6	O.O e ⁻³ rad	-3.4 e ⁻³ rad	-3.7 e ⁻³ rad	-10.9 e ⁻³ rad	-5.0 e ⁻³ rad	-7.8 e ⁻³ rad	-4.9 e ⁻³ rad
	7	O.O e ⁻³ rad	-0.0 e ⁻³ rad	O.4 e ⁻³ rad	-6.1 e ⁻³ rad	4.1 e ⁻³ rad	-3.1 e ⁻³ rad	1.8 e ⁻³ rad
	8	O.O e ⁻³ rad	-0.7 e ⁻³ rad	-0.4 e ⁻³ rad	-5.1 e ⁻³ rad	1.5 e ⁻³ rad	-3.0 e ⁻³ rad	0.2 e ⁻³ rad
	9	O.O e ⁻³ rad	-0.0 e-3 rad	0.4 e ⁻³ rad	-6.1 e ⁻³ rad	4.1 e ⁻³ rad	-3.1 e ⁻³ rad	1.8 e ⁻³ rad
	10	0.0 e ⁻³ rad	-0.7 e ⁻³ rad	-0.4 e ⁻³ rad	-5.1 e ⁻³ rad	1.5 e ⁻³ rad	-3.0 e ⁻³ rad	0.2 e ⁻³ rad
	11	0.0 e ⁻³ rad	-1.8 e ⁻³ rad	-1.6 e ⁻³ rad	-10.2 e ⁻³ rad	-1.4 e ⁻³ rad	-6.7 e ⁻³ rad	-2.2 e ⁻³ rad
	12	O.O e-3 rad	-1.8 e ⁻³ rad	-1.5 e ⁻³ rad	-11.5 e ⁻³ rad	-0.4 e ⁻³ rad	-7.3 e ⁻³ rad	-1.7 e ⁻³ rad
	13	O.O e ⁻³ rad	3.4 e ⁻³ rad	4.4 e ⁻³ rad	8.4 e ⁻³ rad	7.9 e ⁻³ rad	6.3 e ^{.3} rad	6.4 e ⁻³ rad
Kombination Id	14	0.0 e ⁻³ rad	3.4 e ⁻³ rad	4.4 e ⁻³ rad	7.1 e ⁻³ rad	8.9 e ⁻³ rad	5.7 e ⁻³ rad	6.9 e ⁻³ rad
	15	O.O e-3 rad	2.3 e ⁻³ rad	2.8 e ⁻³ rad	0.4 e ⁻³ rad	9.4 e ⁻³ rad	1.7 e ⁻³ rad	6.5 e ⁻³ rad
	16	O.O e ⁻³ rad	2.3 e ⁻³ rad	2.9 e ⁻³ rad	-0.9 e ⁻³ rad	10.5 e ⁻³ rad	1.1 e ⁻³ rad	7.0 e ⁻³ rad
	17	O.O e ⁻³ rad	-5.6 e ⁻³ rad	-6.5 e ⁻³ rad	-11.6 e ⁻³ rad	-12.7 e ⁻³ rad	-9.7 e ⁻³ rad	-10.1 e ⁻³ rad
	18	O.O e ⁻³ rad	-5.6 e ⁻³ rad	-6.4 e ⁻³ rad	-12.9 e ⁻³ rad	-11.6 e ⁻³ rad	-10.3 e ⁻³ rad	-9.6 e ⁻³ rad
	19	0.0 e ⁻³ rad	O.1 e ⁻³ rad	0.4 e ⁻³ rad	-3.6 e ⁻³ rad	2.3 e ⁻³ rad	-1.9 e ⁻³ rad	1.1 e ⁻³ rad
	20	0.0 e ⁻³ rad	O.1 e ⁻³ rad	0.4 e ⁻³ rad	-4.9 e ⁻³ rad	3.4 e ⁻³ rad	-2.5 e ⁻³ rad	1.5 e ⁻³ rad
	21	0.0 e ⁻³ rad	-1.0 e ⁻³ rad	-0.9 e ⁻³ rad	-2.0 e ⁻³ rad	-1.9 e ⁻³ rad	-1.8 e ⁻³ rad	-1.6 e ⁻³ rad
	22	O.O e-3 rad	-1.0 e ⁻³ rad	-0.9 e ⁻³ rad	-3.3 e ⁻³ rad	-0.9 e ⁻³ rad	-2.4 e ⁻³ rad	-1.1 e ⁻³ rad
	23	0.0 e ⁻³ rad	O.1 e ⁻³ rad	0.4 e ⁻³ rad	-3.6 e ⁻³ rad	2.3 e ⁻³ rad	-1.9 e ⁻³ rad	1.1 e ⁻³ rad
	24	0.0 e ⁻³ rad	O.1 e ⁻³ rad	0.4 e ⁻³ rad	-4.9 e ⁻³ rad	3.4 e ⁻³ rad	-2.5 e ⁻³ rad	1.5 e ⁻³ rad
	25	O.O e-3 rad	-1.0 e ⁻³ rad	-0.9 e ⁻³ rad	-2.0 e ⁻³ rad	-1.9 e ⁻³ rad	-1.8 e ⁻³ rad	-1.6 e ⁻³ rad
	26	O.O e-3 rad	-1.0 e ⁻³ rad	-0.9 e ⁻³ rad	-3.3 e ⁻³ rad	-0.9 e ⁻³ rad	-2.4 e ⁻³ rad	-1.1 e ⁻³ rad
Knotenpunk	et	1	2	3	4	5	6	7
Kombination Id	7	0.0 e ⁻³ rad	6.8 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad
	8	0.0 e ⁻³ rad	6.8 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad	8.2 e ⁻³ rad
	9	0.0 e ⁻³ rad	-6.8 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad
	10	0.0 e ⁻³ rad	-6.8 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad	-8.2 e ⁻³ rad
	19	0.0 e ⁻³ rad	11.4 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad
	20	0.0 e ⁻³ rad	11.4 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad
	21	O.O e ⁻³ rad	11.4 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad	13.7 e ⁻³ rad


Knotenpunkt		1	2	3	4	5	6	7
	22	0.0 e ⁻³ rad	11.4 e ⁻³ rad	13.7 e ⁻³ rad				
	23	0.0 e ⁻³ rad	-11.4 e ⁻³ rad	-13.7 e ⁻³ rad				
	24	0.0 e ⁻³ rad	-11.4 e ⁻³ rad	-13.7 e ⁻³ rad				
	25	0.0 e-3 rad	-11.4 e ⁻³ rad	-13.7 e ⁻³ rad				
	26	0.0 e ⁻³ rad	-11.4 e ⁻³ rad	-13.7 e ⁻³ rad				

ANHANG 4 - DETAILLIERTE PRÜFUNG DER ELEMENTE (NF EN 1993-1-1/NA (08/2013))

Element (Id)	Querschnitt	Material	ULS-Quote	ULS-Kombination	SLS-Verhältnis	SLS-Kombination	
Stütze - unterer Teil (1)	IPE500	S275	0.704	ULS 36	0.918	SLS 19	
Stütze - oberer Teil (2)	IPE500	S275	0.622	ULS 36	0.916	3L3 19	
DachRiegel - freitragend (3)	IPE200	S275	0.735	ULS 24	0.336	SLS 12	
Riegel - Spannweite (4)	IPE200	S275	0.928	ULS 24	0.550	3L3 IZ	
Riegel - Spannweite (5)	IPE200	S275	0.748	ULS 32	0.289	SLS 17	
DachRiegel - freitragend (6)	IPE200	S275	0.655	ULS 32	0.269	5L5 I/	
Linke Diagonalstrebe (7)	□ 120x3	S235	0.79	ULS 24	-	-	
Rechte Diagonalstrebe (8)	□ 120x4	S235	0.789	ULS 32	-	-	

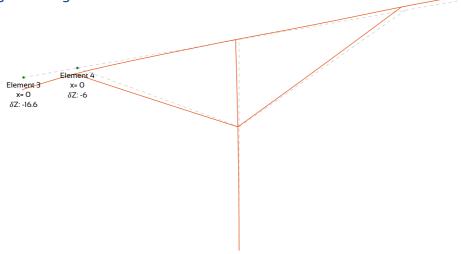
Maximale Verschiebung am oberen Ende der Stütze auf der X-Achse : $U_X = -21.3 \text{ mm}(\text{SLS 18}) < \text{H}/100 = 10.7 \text{ M}$

Maximale Verschiebung am oberen Ende der Stütze auf der Y-Achse : U_Y = 43.8 mm (SLS 19) < H/100 = 47.8 mm

Element 1

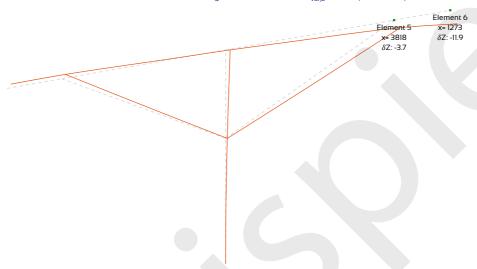
Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Kompression (Knickung) (§63.1)	0.188	ULS 6	0.0 m
Scherung auf der z-z-Achse (86.26)	0.017	ULS 33	0.0 m
Scherung auf der y-y-Achse (86.2.6)	0.009	ULS 37	0.0 m
Biegen um die y-y-Achse (66.25)	0.534	ULS 36	0.0 m
Biegen um die z-z-Achse (66.25)	0.442	ULS 37	0.0 m
Biegedrillknicken (§6.3.2)	0.679	ULS 36	0.0 m
Biegung um y-y und Scherung auf z-z (8628)	0.534	ULS 36	0.0 m
Biegung um z-z und Scherung auf y-y (8628)	0.442	ULS 37	0.0 m
Biegung um y-y und Axialkraft (§6.2.9)	0.534	ULS 36	0.0 m
Biegung um z-z und Axialkraft (§6.2.9)	0.442	ULS 37	0.0 m
Zweiachsige Biegung (862.9)	0.455	ULS 44	0.0 m
Seitlich-drehendes Knicken, Biegen um z-z und Biegeknicken um y-y (eq. 6.61)	0.704	ULS 36	0.0 m
Biegedrillknicken, Biegen um z-z und Biegeknicken um z-z (eq. 6.62)	0.506	ULS 40	0.0 m

Schlankheit λ _{y,max}	Schlankheit $\lambda_{z,max}$	Kritischer Faktor $\alpha_{cr,y,min}$	Kritischer Faktor $\alpha_{cr,z,min}$
45.0	213.4	147.73	6.56


Element 2

<u>Maximale Arbeitsgeschwindigkeiten nach Beanspruchungsart und entsprechenden Kombinationen</u>

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Kompression (Knickung) (§63.1)	0.06	ULS 36	0.0 m
Scherung auf der z-z-Achse (\$62.6)	0.149	ULS 36	0.0 m
Scherung auf der y-y-Achse (56.2.6)	0.007	ULS 37	0.0 m
Biegen um die y-y-Achse (§625)	0.463	ULS 36	0.0 m
Biegen um die z-z-Achse (§6.25)	0.161	ULS 37	0.0 m
Biegedrillknicken (8632)	0.588	ULS 36	0.0 m
Biegung um y-y und Scherung auf z-z (9628)	0.463	ULS 36	0.0 m
Biegung um z-z und Scherung auf y-y (5628)	0.161	ULS 37	0.0 m
Biegung um y-y und Axialkraft (862.9)	0.463	ULS 36	0.0 m
Biegung um z-z und Axialkraft (86.2.9)	0.161	ULS 37	0.0 m
Zweiachsige Biegung (§6.2.9)	0.165	ULS 44	0.0 m
Seitlich-drehendes Knicken, Biegen um z-z und Biegeknicken um y-y (eq. 6.61)	0.622	ULS 36	0.0 m
Biegedrillknicken, Biegen um z-z und Biegeknicken um z-z (eq.6.62)	0.378	ULS 36	0.0 m


Schlankheit $\lambda_{y,max}$	Schlankheit $\lambda_{z,max}$	Kritischer Faktor α _{cr,y,min}	Kritischer Faktor α _{cr,z,min}
45.0	213.4	432.73	19.23

Anhang 4.2 - Riegel

Maximale Gesamtverformung auf der linken Seite : δ_{Z} = -16.6 mm(SLS 12) < L/100 = 49.5 mm

Maximale variable Auslenkung auf der linken Seite : $\delta_{Var,Z}$ = 11.2 mm(SLS 13 - SLS 1) < L/125 = 39.6 mm

Maximale Gesamtverformung auf der rechten Seite : δ_Z = -11.9 mm(SLS 16) < L/100 = 50.9 mm Maximale variable Auslenkung auf der rechten Seite : $\delta_{Var,Z}$ = 11.8 mm(SLS 17 - SLS 1) < L/125 = 40.7 mm

Element 3

Maximale Arbeitsgeschwindigkeiten nach Beanspruchungsart und entsprechenden Kombinationen

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Spannung (\$6.2.3)	0.004	ULS 10	1.237 m
Scherung auf der z-z-Achse (962.6)	0.137	ULS 24	1.237 m
Scherung auf der y-y-Achse (96.2.6)	0.001	ULS 37	0.0 m
Biegen um die y-y-Achse (96.2.5)	0.634	ULS 24	1.237 m
Biegen um die z-z-Achse (9625)	0.018	ULS 37	1.237 m
Biegedrillknicken (56.3.2)	0.735	ULS 24	1.237 m
Biegung um y-y und Scherung auf z-z (96.2.8)	0.634	ULS 24	1.237 m
Biegung um z-z und Scherung auf y-y (96.2.8)	0.018	ULS 37	1.237 m
Biegung um y-y und Axialkraft (§6.2.9)	0.634	ULS 24	1.237 m
Biegung um z-z und Axialkraft (§6.2.9)	0.018	ULS 37	1.237 m
Zweiachsige Biegung (§6.2.9)	0.207	ULS 14	1.237 m

Schlankheit λ _{y,max}	Schlankheit λ _{z,max}			
30.0	89.8			

Element 4

<u>Maximale Arbeitsgeschwindigkeiten nach Beanspruchungsart und entsprechenden Kombinationen</u>

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Kompression (Knickung) (§6.3.1)	0.177	ULS 25	0.0 m
Scherung auf der z-z-Achse (56.2.6)	0.16	ULS 6	0.0 m
Scherung auf der y-y-Achse (56.26)	0.011	ULS 45	3.712 m
Biegen um die y-y-Achse (96.25)	0.634	ULS 24	0.0 m
Biegen um die z-z-Achse (§625)	0.19	ULS 37	3.712 m
Biegedrillknicken (86.3.2)	0.928	ULS 24	0.0 m
Biegung um y-y und Scherung auf z-z (9628)	0.634	ULS 24	0.0 m
Biegung um z-z und Scherung auf y-y (5628)	0.19	ULS 37	3.712 m
Biegung um y-y und Axialkraft (§6.2.9)	0.634	ULS 24	0.0 m
Biegung um z-z und Axialkraft (8629)	0.19	ULS 37	3.712 m
Zweiachsige Biegung [862.9]	0.228	ULS 40	3.712 m
Seitlich-drehendes Knicken, Biegen um z-z und Biegeknicken um y-y (eq. 6.61)	0.586	ULS 25	0.0 m
Biegedrillknicken, Biegen um z-z und Biegeknicken um z-z (eq. 6.62)	0.433	ULS 25	0.0 m

Schlankheit λ _{y,max}	Schlankheit λ _{z,max}
31.5	89.8

Element 5

<u>Maximale Arbeitsgeschwindigkeiten nach Beanspruchungsart und entsprechenden Kombinationen</u>

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Kompression (Knickung) (56.3.1)	0.231	ULS 33	0.0 m
Scherung auf der z-z-Achse (§6.2.6)	0.153	ULS 10	3.818 m
Scherung auf der y-y-Achse (§6.2.6)	0.009	ULS 45	0.0 m
Biegen um die y-y-Achse (\$62.5)	0.561	ULS 32	3.818 m
Biegen um die z-z-Achse (§62.5)	0.19	ULS 37	0.0 m
Biegedrillknicken (86.3.2)	0.748	ULS 32	3.818 m
Biegung um y-y und Scherung auf z-z (562.8)	0.561	ULS 32	3.818 m
Biegung um z-z und Scherung auf y-y (562.8)	0.19	ULS 37	0.0 m
Biegung um y-y und Axialkraft (562.9)	0.561	ULS 32	3.818 m
Biegung um z-z und Axialkraft (66.29)	0.19	ULS 37	0.0 m
Zweiachsige Biegung (§62.9)	0.228	ULS 40	0.0 m
Seitlich-drehendes Knicken, Biegen um z-z und Biegeknicken um y-y (eq. 6.61)	0.685	ULS 33	3.818 m
Biegedrillknicken, Biegen um z-z und Biegeknicken um z-z (eq. 6.62)	0.52	ULS 33	3.818 m
Schlankheit Av. may		Schlankheit λ	

Schlankheit λ _{y,max}	Schlankheit $\lambda_{z,max}$
32.4	89.8

Element 6

Maximale Arbeitsgeschwindigkeiten nach Beanspruchungsart und entsprechenden Kombinationen

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Kompression (Knickung) (963.1)	0.007	ULS 12	O.O m
Scherung auf der z-z-Achse (§62.6)	0.124	ULS 32	0.0 m
Scherung auf der y-y-Achse (§62.6)	0.001	ULS 37	1.273 m
Biegen um die y-y-Achse (66.25)	0.561	ULS 32	0.0 m
Biegen um die z-z-Achse (§625)	0.018	ULS 37	0.0 m
Biegedrillknicken (56.3.2)	0.655	ULS 32	0.0 m
Biegung um y-y und Scherung auf z-z (5628)	0.561	ULS 32	0.0 m
Biegung um z-z und Scherung auf y-y (86.28)	0.018	ULS 37	0.0 m
Biegung um y-y und Axialkraft (56.2.9)	0.561	ULS 32	0.0 m
Biegung um z-z und Axialkraft (862.9)	0.018	ULS 37	0.0 m
Zweiachsige Biegung (86.2.9)	0.145	ULS 14	0.0 m
Seitlich-drehendes Knicken, Biegen um z-z und Biegeknicken um y-y (eq. 6.61)	0.65	ULS 32	0.0 m
Biegedrillknicken, Biegen um z-z und Biegeknicken um z-z (eq. 6.62)	0.343	ULS 32	0.0 m

Schlankheit λ _{y,max}	Schlankheit λ _{z,max}
30.8	89.8

Anhang 4.3 - Diagonale Streben

Element 7

Maximale Arbeitsgeschwindigkeiten nach Beanspruchungsart und entsprechenden Kombinationen

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Kompression (Knickung) (56.3.1)	0.648	ULS 24	3.89 m
Scherung auf der z-z-Achse (§6.2.6)	0.003	ULS 30	0.0 m
Scherung auf der y-y-Achse (§6.2.6)	0.003	ULS 37	0.0 m
Biegen um die y-y-Achse (56.2.5)	0.02	ULS 2	1.945 m
Biegen um die z-z-Achse (56.2.5)	0.092	ULS 24	3.89 m
Biegung um y-y und Scherung auf z-z (86.2.8)	0.02	ULS 2	1.945 m
Biegung um z-z und Scherung auf y-y (86.2.8)	0.092	ULS 24	3.89 m
Biegung um y-y und Axialkraft (66.29)	0.025	ULS 24	1.945 m
Biegung um z-z und Axialkraft (66.29)	0.092	ULS 24	3.89 m
Zweiachsige Biegung (§6.2.9)	0.011	ULS 40	1.945 m
Seitlich-drehendes Knicken, Biegen um z-z und Biegeknicken um y-y (eq. 6.61)	0.721	ULS 24	1.945 m
Biegedrillknicken, Biegen um z-z und Biegeknicken um z-z (eq. 6.62)	0.79	ULS 24	1.945 m

Schlankheit λ _{y,max}	Schlankheit $\lambda_{z,max}$
73.6	81.8

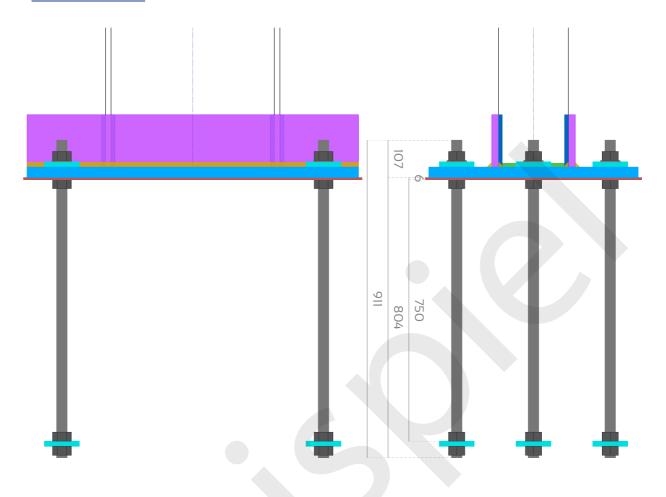
Überprüfungen	Arbeitssätze	Assoziierte Kombinationen	Abszisse auf dem Element
Kompression (Knickung) (86.3.1)	0.653	ULS 32	0.0 m
Scherung auf der z-z-Achse (§62.6)	0.003	ULS 22	0.0 m
Scherung auf der y-y-Achse (§62.6)	0.003	ULS 37	0.0 m
Biegen um die y-y-Achse (\$62.5)	0.024	ULS 2	2.297 m
Biegen um die z-z-Achse (5625)	0.078	ULS 32	0.0 m
Biegung um y-y und Scherung auf z-z (56.28)	0.024	ULS 2	2.297 m
Biegung um z-z und Scherung auf y-y (56.2.8)	0.078	ULS 32	0.0 m
Biegung um y-y und Axialkraft (8629)	0.028	ULS 32	2.297 m
Biegung um z-z und Axialkraft (8629)	0.078	ULS 32	0.0 m
Zweiachsige Biegung (§6.2.9)	0.011	ULS 40	2.297 m
Seitlich-drehendes Knicken, Biegen um z-z und Biegeknicken um y-y (eq. 6.61)	0.72	ULS 32	2.297 m
Biegedrillknicken, Biegen um z-z und Biegeknicken um z-z (eq. 6.62)	0.789	ULS 32	2.297 m

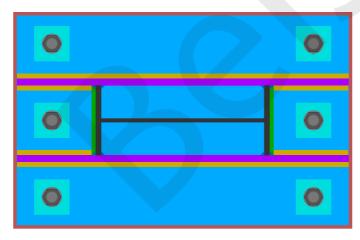
Schlankheit $\lambda_{y,max}$	Schlankheit λ _{z,max}
87.8	97.6

ANHANG 5 - SYSTEM DER LÄNGSSTABILITÄT (NF EN 1993-1-1/NA (08/2013))

Anhang 5.1 - Querverstrebungen im Dach

83	85		87	89	90	92		94	96
28		98		88 105	10h 0		66		95
P63	65	78	67	ድ 69	70 🖁	72	8	74	‰ 6
79 49	51	99	53	g (0 ³)	10 ₃	58	73	60	52
02		23		702			69		19
9€9	31	44	33	₹ 10 10 10 10 10 10 10 10 10 10 10 10 10	36 4	38	74	40	8 42
0 8	17	32	19	% 2I	9 ⁸ km	24	39	26	28 4
2		<u>®</u>		R 91	99 K		25		27
٥	2	<u>o</u>	3	= 4	5 2	6	<u>m</u>	7	4 8


Maximale Arbeitssätze pro Element und zugehörige Kombinationen


Element (Id)	Querschnitt	Material	ULS-Quote	ULS-Kombination
Dachaussteifung (97)	L40x40x4	S235	0.358	1.5 x Wf-
Dachaussteifung (98)	L40x40x4	S235	0.55	1.5 x Wf-
Dachaussteifung (99)	L40x40x4	S235	0.358	1.5 x Wb-
Dachaussteifung (100)	L40x40x4	S235	0.55	1.5 x Wb-
Dachaussteifung (101)	L40x40x4	S235	0.044	1.5 x Wb-
Dachaussteifung (102)	L40x40x4	S235	0.044	1.5 x Wf-
Dachaussteifung (103)	L40x40x4	S235	0.561	1.5 x Wb-
Dachaussteifung (104)	L40x40x4	S235	0.364	1.5 x Wb-
Dachaussteifung (105)	L40x40x4	S235	0.561	1.5 x Wf-
Dachaussteifung (106)	L40x40x4	S235	0.364	1.5 x Wf-

ANHANG 6 - DETAILLIERTE ÜBERPRÜFUNG DER VERBINDUNGEN (NF EN 1993-1-8/NA (07/2007))

Anhang 6.1 - Stützenfuß und Verankerungen

Skizze und Maßtabelle

Kehlen schweißen						
Horizontal an den Stützenflanschen a,f	Horizontal an den Versteifungen a,s	Vertikal auf der Stütze				
8 mm	10 mm	8 mm				

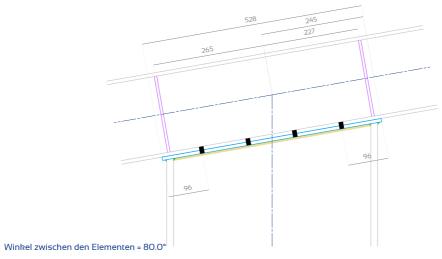
Winkel zwischen den Elementen = 90.0°

Ankerbolzen	Bezeichnung	Durchmesser der Gewindestange d	Durchmesser der Unterlegscheibe	Abstände in Querrichtung p2	Randabstand e2	Abstand in Längsrichtung PI	Entfernung beenden _{e1}
	M30 8.8	30 mm	56 mm	220 mm > 79.2 mm	80.0 mm > 39.6 mm	750 mm > 79.2 mm	100.0 mm > 39.6 mm
Lehrenplatte positionieren	Dicke $t_{\rm lp}$	Breite B _{IP}	Länge L _{lp}	Verankerungspolster und Stützpolster	Dicke t _{ap}	Breite B _{ap}	Abstand unter der Platte der Positioniervorrichtung
	6 mm	620 mm	970 mm		15 mm	100 mm	750 mm
Grundplatte der	Dicke t _p	Breite Bp	Länge டி	Bohrungen do	Versteifungen	Dicke t _s	Höhe hs
Stütze	30 mm	600 mm	950 mm	33 mm		20 mm	150 mm

Hüllkurven der maximalen Spannungen im globalen Koordinatensystem

Vorherrschender Stress	N _Z	V _X	M _Y	V _Y	M _X	T _Z	Kombination
Spannung	3734.7 daN	-1366.3 daN	16527.2 m.daN	O.O daN	O.O m.daN	O.O m.daN	ULS 25
Kompression	-16002.5 daN	503.1 daN	-5371.3 m.daN	O.O daN	O.O m.daN	O.O m.daN	ULS 6
Scherung auf x-x	3386.6 daN	-1588.3 daN	-32037.8 m.daN	O.O daN	O.O m.daN	O.O m.daN	ULS 33
Biegemoment um y-y	-1863.1 daN	-1588.3 daN	-32245.1 m.daN	O.O daN	O.O m.daN	O.O m.daN	ULS 36
Scherung auf y-y	1825.3 daN	-1174.3 daN	-6676.6 m.daN	1003.9 daN	-4079.9 m.daN	-0.0 m.daN	ULS 41
Biegemoment um x-x	-3424.3 daN	-1174.3 daN	-6884.0 m.daN	1003.9 daN	-4079.9 m.daN	-0.0 m.daN	ULS 44
Torsionsmoment um z-z	1825.3 daN	-1174.3 daN	-6676.6 m.daN	1003.9 daN	-4079.9 m.daN	-O.O m.daN	ULS 41

$\underline{Maximale\ Arbeitsgeschwindigkeiten\ nach\ Beanspruchungsart\ und\ entsprechenden\ Kombinationen}$


Überprüfungen	Arbeitssätze	Assoziierte Kombinationen
Axiale Festigkeit der Baugruppe (EN 1993-1-8 Gleichung 624)	0.032	ULS 25
Zusammengesetzte Biegefestigkeit um y-y (EN 1993-1-8 Gleichung 6.23)	0.813	ULS 33
Zusammengesetzte Biegefestigkeit um z-z (EN 1993-1-8 Gleichung 6.23)	0.279	ULS 41
Montageverbund biaxiale Biegefestigkeit (EN 1993-1-8 Gleichung 6.24)	0.437	ULS 41
Scherbruch der Ankerbolzen (EN 1993-1-8 %6.2.2(7))	0.03	ULS 33
Zugversagen der Ankerbolzen (BNCM / CNC2M – NO175 56(9))	0.621	ULS 33
Kombiniertes Zug- und Scherversagen der Ankerbolzen (BNCM/CNC2M-N0175 6(9))	0.473	ULS 33
Steifigkeit der Ankerplatten (CTICM 1982 YLESCOUARC'H 9II.6d)	0.378	ULS 33
Gespannte Versteifungen - Biegefestigkeit (EN 1993-1-1 66.2.5)	0.742	ULS 33
Komprimierte Versteifungen - Biegefestigkeit (EN 1993-1-1 %625)	0.391	ULS 36
Gespannte Versteifungen - Scherfestigkeit (EN 1993-I-1 §6.2.6)	0.59	ULS 33
Komprimierte Versteifungen - Scherfestigkeit (EN 1993-I-1 8626)	0.584	ULS 36
Schweißnähte der gespannten Grundplatte an der Stütze (EN 1993-1-8 \$4.53.2)	0.453	ULS 33
Schweißnähte der komprimierten Grundplatte an der Stütze (EN 1993-1-8 94-5-32)	0.451	ULS 36
Schweißnähte der Spannversteifungen an der Stütze (EN 1993-1-8 \$45.3.2)	0.539	ULS 33
Schweißnähte der gepressten Versteifungen an der Stütze (EN 1993-1-8 \$4.5.3.2)	0.534	ULS 36
Schweißnähte der Spannversteifungen an der Grundplatte (EN 1993-1-8 §4,53.2)	0.521	ULS 33
Schweißnähte der komprimierten Versteifungen an der Grundplatte (EN 1993-1-8 \$4.53.2)	0.516	ULS 36

Überprüfungen	Status	Informationen
Steifigkeitszustand der Auslegerversteifung (стісм 1988 YLESCOUARCH SIL3-3.a)	OK	-
Plastizitätszustand des Versteifungsauslegers (EN 1993-1-1 \$5.6)	OK	Klasse 1
Plastizitätszustand des Versteifungsteils zwischen den Stützenflanschen (EN 1993-1-1 55.6)	OK	Klasse 1

 $Der Mindestquerschnitt der Betonbewehrung zur Vermeidung von Spaltversagen sollte gr\"{o}Ger als 5.5 \, cm^2 \, sein.$

Anhang 6.2 - Obere Endplatte der Stütze

Skizze und Maßtabelle

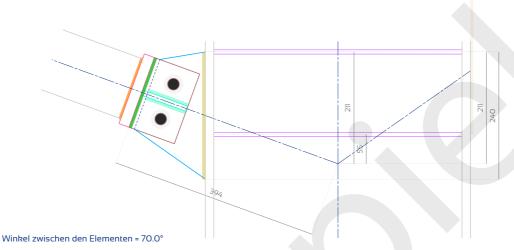
Endplatte	Dicke t _p	Breite	Länge	Bohrungen do	Schweißnaht an den Flanschen af	Schweißnaht im Internet a,w
	8.0 mm	200.0 mm	(Siehe Skizze)	11 mm	4 mm	4 mm
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der Unterlegscheibe	Abstände in Querrichtung _{P2}	Kantenabstand (Riegel) e2	Abstand in Längsrichtung _{Pl}
	M10 8.8 SB	10 mm	20 mm	58 mm > 26.4 mm	21.0 mm > 13.2 mm	112 mm > 24.2 mm
Versteifung	Dicke ts	Breite bs	Position			
verstellung	6 mm	40 mm	(Siehe Skizze)			

Hüllkurven der maximalen Spannungen im lokalen Koordinatensystem der oberen Stützenendplatte

Vorherrschender Stress	F _{N,Ed}	F _{Vx,Ed}	F _{Vy,Ed}	Kombination
Spannung	1599.1 daN	10776.0 daN	O.O daN	ULS 25
Kompression	-4043.2 daN	-4180.1 daN	O.O daN	ULS 6
Scherung auf z-z	14.1 daN	-14317.9 daN	O.O daN	ULS 36
Scherung auf y-y	928.9 daN	-1578.4 daN	-620.1 daN	ULS 41

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen
Scherfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.886	ULS 36
Zugfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.074	ULS 25
Kombinierte Scher- und Zugfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.911	ULS 33
Tragfähigkeit des unteren Flansches des Riegels (EN 1993-1-8 Tabelle 3.4)	0.886	ULS 36
Tragfähigkeit der oberen Endplatte der Stütze (EN 1993-1-8 Tabelle 3.4)	0.886	ULS 36
Durchstanzfestigkeit des unteren Flansches des Riegels (EN 1993-1-8 Tabelle 3.4)	0.024	ULS 25
Durchstanzfestigkeit der oberen Endplatte der Stütze (EN 1993-1-8 Tabelle 3.4)	0.031	ULS 25
Biegefestigkeit des Untergurtes des Riegels (EN 1993-1-8 562)	0.065	ULS 25
Biegefestigkeit der oberen Endplatte der Stütze (EN 1993-1-8 562)	0.074	ULS 25
Druckfestigkeit von Stegaussteifungen (BNCM / CNC2M – NO175 Tabelle 18)	0.037	ULS 6
Schweißnahtfestigkeit der Platte am Stützensteg (EN 1993-1-8 \$4533)	0.203	ULS 36
Festigkeit der Schweißnähte von Blechen an Stützenflanschen (EN 1993-1-8 54.5.3.3)	0.014	ULS 41

Anhang 6.3 - Diagonale Streben Zwickel

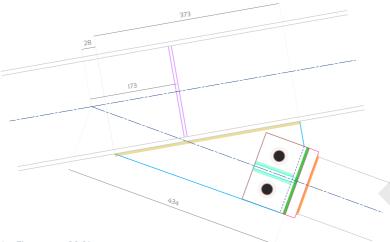

Element 7 (Links)

<u>Hüllkurven der maximalen Spannungen im Element</u>

Zwickel befestigt an	Stütze			Riegel		
Vorherrschender Stress	N _X	V _Z	Kombination	N _X	V _Z	Kombination
Spannung	9321.9 daN	-21.4 daN	ULS 25	9337.5 daN	21.4 daN	ULS 25
Kompression	-12985.8 daN	-28.9 daN	ULS 24	-12964.8 daN	28.9 daN	ULS 24

Seite der Stütze

Skizze und Maßtabelle


Zwickel an der Diagonalstrebe	Dicke t _{b,g}	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der	Dicke t _{b,p}	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,p
Diagonalstrebe befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke t _i	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schwei	ßnaht a,os,g
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm		4 mm
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände p ₂	Randabstand e ₂	Entfernung beenden _{e1}
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
C	Dicke x Breite	Seitliche	Dicke t _{ls,g}	Breite b _{ls.g}	Höhe h _{s.g}	Schweißnaht a,ls,g
Stegversteifungen	8 mm x 90 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen
Scherfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.691	ULS 24
Zugfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.115	ULS 24
Kombinierte Scher- und Zugfestigkeit von Bolzen (EN 1993-I-8 Tabelle 3.4)	0.773	ULS 24
Tragfähigkeit der Zwickel (EN 1993-1-8 Tabelle 3.4)	0.751	ULS 24
Spannungen in den Zwickeln (EN 1993-1-1 56.23)	0.375	ULS 25
Blockieren des Aufreißens der Zwickel (EN 1993-1-8 83.10.2)	0.43	ULS 25
Druckfestigkeit von Stegaussteifungen (BNCM / CNC2M – NO175 Tabelle 18)	0.095	ULS 24
Biegewiderstand der Seitenversteifung (EN 1993-I-1 56.25)	0.371	ULS 24
Lokales Versagen der diagonalen Strebenwände aufgrund des Zwickeldrucks (CIDECT DG1-57.4)	0.908	ULS 24
Lokales Versagen des Zwickels aufgrund des Drucks der Diagonalstreben (CIDECT DG1-\$7.4)	0.524	ULS 24
Örtliches Versagen der Diagonalstreben-Seitenwand aufgrund des Drucks der Versteifung (CIDECT DG 1 - \$7.4)	0.383	ULS 24
Schweißnahtfestigkeit der Endplatte an der Diagonalstrebe (EN 1993-1-8 \$4.5.3.3)	0.546	ULS 24
Schweißnahtfestigkeit des Zwickels an der Endplatte (EN 1993-I-8 \$4.533)	0.707	ULS 24
Festigkeit der Verschweißung des Zwickels mit dem anderen Element (EN 1993-1-8 \$453.3)	0.337	ULS 24

Überprüfungen	Status	Informationen
Plastizitätszustand der seitlichen Versteifung (EN 1993-1-1556)	OK	Klasse 1

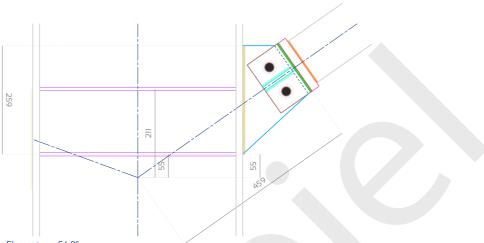
Skizze und Maßtabelle

Winkel zwischen den Elementen = 30.0°

Zwickel an der Diagonalstrebe	Dicke t _{b,g}	Breite	Länge	Bohrungen do	Schwei	ßnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der	Dicke t _{b,p}	Breite	Länge	Bohrungen do	Schwei	ßnaht a,b,p
Diagonalstrebe befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke t _i	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schwei	ßnaht a,os,g
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm	4 mm	
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände _{P2}	Randabstand e ₂	Entfernung beenden _{e1}
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
6	Dicke x Breite	Seitliche	Dicke t _{ls,g}	Breite b _{ls.g}	Höhe h _{is.g}	Schweißnaht a,Is
Stegversteifungen	6 mm x 40 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen
Scherfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.69	ULS 24
Zugfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.115	ULS 24
Kombinierte Scher- und Zugfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.772	ULS 24
Tragfähigkeit der Zwickel (EN 1993-1-8 Tabelle 3.4)	0.75	ULS 24
Spannungen in den Zwickeln (EN 1993-1-1 5623)	0.375	ULS 25
Blockieren des Aufreißens der Zwickel (EN 1993-I-8 §3.10.2)	0.43	ULS 25
Druckfestigkeit von Stegaussteifungen (BNCM / CNC2M – NO175 Tabelle 18)	0.096	ULS 24
Biegewiderstand der Seitenversteifung (EN 1993-1-1 56.25)	0.371	ULS 24
Lokales Versagen der diagonalen Strebenwände aufgrund des Zwickeldrucks (CIDECT DG1-\$7.4)	0.906	ULS 24
Lokales Versagen des Zwickels aufgrund des Drucks der Diagonalstreben (CIDECT DG 1-\$7.4)	0.523	ULS 24
Örtliches Versagen der Diagonalstreben-Seitenwand aufgrund des Drucks der Versteifung (CIDECT DG1-57/4)	0.383	ULS 24
Schweißnahtfestigkeit der Endplatte an der Diagonalstrebe (EN 1993-I-8 \$4.5.33)	0.545	ULS 24
Schweißnahtfestigkeit des Zwickels an der Endplatte (EN 1993-1-8 \$4.5.3.3)	0.706	ULS 24
Festigkeit der Verschweißung des Zwickels mit dem anderen Element (EN 1993-1-8 \$45.3.3)	0.276	ULS 24

Überprüfungen	Status	Informationen
Plastizitätszustand der seitlichen Versteifung (EN 1993-1-185.6)	OK	Klasse 1

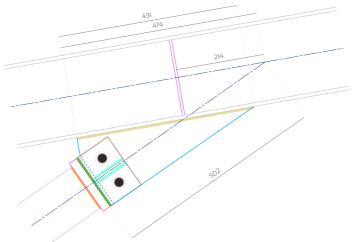

Element 8 (Rechts)

Hüllkurven der maximalen Spannungen im Element

Zwickel befestigt an	Stütze				Riegel	
Vorherrschender Stress	N _X	V _Z	Kombination	N _X	V_{Z}	Kombination
Spannung	11095.5 daN	28.9 daN	ULS 33	11136.0 daN	-28.9 daN	ULS 33
Kompression	-14418.7 daN	39.0 daN	ULS 32	-14363.9 daN	-39.0 daN	ULS 32

Seite der Stütze

Skizze und Maßtabelle


Winkel zwischen den Elementen = 54.9°

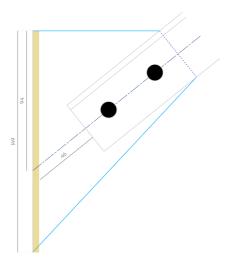
Zwickel an der Diagonalstrebe	Dicke tb.g	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der	Dicke the	Breite	Länge	Bohrungen do	Schwe	ißnaht a,b,p
Diagonalstrebe befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke 4	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schweißnaht a,os,g	
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm	4 mm	
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände p2	Randabstand e2	Entfernung beenden eı
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
Ctoguerataifungen	Dicke x Breite	Seitliche	Dicke t _{ls,g}	Breite bisg	Höhe h _{bg}	Schweißnaht a,ls,g
Stegversteifungen	8 mm x 90 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen
Scherfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.767	ULS 32
Zugfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.128	ULS 32
Kombinierte Scher- und Zugfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.858	ULS 32
Tragfähigkeit der Zwickel (EN 1993-1-8 Tabelle 3.4)	0.834	ULS 32
Spannungen in den Zwickeln (EN 1993-1-1 56.23)	0.446	ULS 33
Blockieren des Aufreißens der Zwickel (EN 1993-I-8 \$3.10.2)	0.511	ULS 33
Druckfestigkeit von Stegaussteifungen (BNCM / CNC2M – NO175 Tabelle 18)	0.092	ULS 32
Biegewiderstand der Seitenversteifung (EN 1993-I-1 56.25)	0.412	ULS 32
Lokales Versagen der diagonalen Strebenwände aufgrund des Zwickeldrucks (CIDECT DG1-\$7.4)	0.756	ULS 32
Lokales Versagen des Zwickels aufgrund des Drucks der Diagonalstreben (CIDECT DG1-\$7.4)	0.573	ULS 32
Örtliches Versagen der Diagonalstreben-Seitenwand aufgrund des Drucks der Versteifung (CIDECT DG 1-57.4)	0.326	ULS 32
Schweißnahtfestigkeit der Endplatte an der Diagonalstrebe (EN 1993-1-8 \$4.5.3.3)	0.606	ULS 32
Schweißnahtfestigkeit des Zwickels an der Endplatte (EN 1993-I-8 \$4.5.3.3)	0.785	ULS 32
Festigkeit der Verschweißung des Zwickels mit dem anderen Element (EN 1993-1-8 \$45.3.3)	0.374	ULS 32

Überprüfungen	Status	Informationen
Plastizitätszustand der seitlichen Versteifung (EN 1993-1-155.6)	OK	Klasse 1

Skizze und Maßtabelle

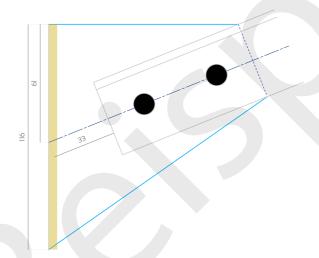
Winkel zwischen den Elementen = 25.1°


Zwickel an der Diagonalstrebe	Dicke t _{b.g}	Breite	Länge	Bohrungen do	Schwei	ißnaht a,b,g
befestigt	10 mm	140 mm	91 mm	22 mm		4 mm
Endplatte an der	Dicke t _{b,p}	Breite	Länge	Bohrungen do	Schwei	ißnaht a,b,p
Diagonalstrebe befestigt	20 mm	140 mm	140 mm	10 mm (Verzinkung)		3 mm
Zwickel am anderen Element	Dicke t _i	Abmessungen und Position	Bohrungen do	Spielraum mit Endplatte	Schweißnaht a,os,g	
befestigt	10 mm	(Siehe Skizze)	22 mm	11 mm	4 mm	
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der gehärteten Unterlegscheibe	Abstände _{P2}	Randabstand e ₂	Entfernung beenden _{ei}
	M20 8.8 SB	20 mm	37 mm	70 mm > 52.8 mm	35.0 mm > 26.4 mm	40 mm > 26.4 mm
6	Dicke x Breite	Seitliche	Dicke t _{ls,g}	Breite b _{ls.g}	Höhe h _{is.g}	Schweißnaht a,ls,
Stegversteifungen	6 mm x 40 mm	Zwickelversteifung	10 mm	65 mm	90 mm	4 mm

Arbeitssätze	Assoziierte Kombinationen
0.764	ULS 32
0.127	ULS 32
0.855	ULS 32
0.831	ULS 32
0.448	ULS 33
0.513	ULS 33
0.081	ULS 32
0.411	ULS 32
0.753	ULS 32
0.571	ULS 32
0.325	ULS 32
0.604	ULS 32
0.782	ULS 32
0.26	ULS 32
	0.764 0.127 0.855 0.831 0.448 0.513 0.081 0.411 0.753 0.571 0.325 0.604 0.782

Überprüfungen	Status	Informationen
Plastizitätszustand der seitlichen Versteifung (EN 1993-1-185.6)	OK	Klasse 1

Anhang 6.4 - Querverstrebungen im Dach


Skizze und Maßtabelle

Winkel = 38.8°

Floroont	Querschnitt	Zwickel	Dicke t	Abmessungen und Position	Bohrungen do	Schweißnaht a,w
Element	L40x40x4		5 mm	(Siehe Skizze)	11 mm	3 mm
	Bezeichnung	Durchmesser der Schraube d	Durchmesser der Unterlegscheibe	Randabstand e2	Abstände pi	Entfernung beenden e
Bolzen	M10 8.8 SB	10 mm	20 mm	20 mm > 13.2 mm	40 mm > 24.2 mm	20 mm > 13.2 mm

Skizze und Maßtabelle

Winkel = 21.9°

Element	Querschnitt	Zwickel	Dicke t	Abmessungen und Position	Bohrungen do	Schweißnaht a,w
	L40x40x4		5 mm	(Siehe Skizze)	11 mm	3 mm
Bolzen	Bezeichnung	Durchmesser der Schraube d	Durchmesser der Unterlegscheibe	Randabstand e2	Abstände Pi	Entfernung beenden e_i
	M10 8.8 SB	10 mm	20 mm	20 mm > 13.2 mm	40 mm > 24.2 mm	20 mm > 13.2 mm

Überprüfungen	Arbeitssätze	Assoziierte Kombinationen
Scherfestigkeit von Bolzen (EN 1993-1-8 Tabelle 3.4)	0.466	1.5 x Wb-
Tragfähigkeit des Stahlwinkels auf x-x Achse (EN 1993-1-8 Tabelle 3.4)	0.544	1.5 x Wb-
Tragfähigkeit des Stahlwinkels auf y-y Achse (EN 1993-1-8 Tabelle 3.4)	0.24	1.5 x Wb-
Interaktion des Lagerwiderstandes auf der x-x und y-y Achse des Stahlwinkels (BNCM / CNC2M - NO175 §2.1(5))	0.354	1.5 x Wb-
Tragfähigkeit des Zwickels auf der Achse x-x (EN 1993-1-8 Tabelle 3.4)	0.435	1.5 x Wb-
Tragfähigkeit des Zwickels auf der Achse y-y (EN 1993-1-8 Tabelle 3.4)	0.192	1.5 x Wb-
Lagerwiderstandsinteraktion auf der x-x und y-y Achse des Zwickels (BNCM /CNC2M - NO175 \$2.1(5))	0.226	1.5 x Wb-
Blockabriss des Stahlwinkels (EN 1993-1-8 \$3.10.2)	0.594	1.5 x Wb-
Einreißen des Zwickels verhindern (EN 1993-1-8 \$3.10.2)	0.476	1.5 x Wb-
Schweißnahtfestigkeit des Zwickels (EN 1993-1-8 \$4.53.3)	0.146	1.5 x Wb-