

VORLÄUFIGER STUDIENBERICHT

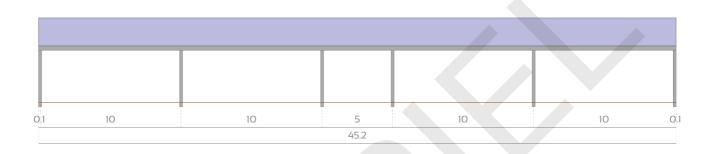
Projet exemple rapport - Exemple de client

Projekt definiert durch : xxx-xxx

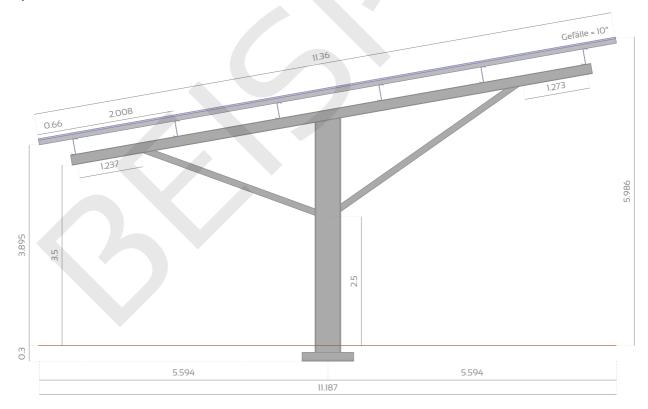
E-Mail: contact@eurocodes-tools.com

Letzte Aktualisierung: 2024-12-17 09:42

Diese Software wurde von der Firma Optimax Structures entwickelt und dient ausschließlich zur Schätzung in der Vorprojektphase.
verpflichtet sich, die erzielten Ergebnisse mit einem kompetenten Statiker zu überprüfen und übernimmt die volle Verantwortung für deren Verwendung.
Bitte beachten Sie, dass dieses Dokument nur als Kostenvoranschlag für die Erstellung eines Projektangebots dient.
Es ist unter keinen Umständen erlaubt, ein Bauwerk unter Verwendung dieses Dokuments herzustellen oder zu konstruieren.


Geplanter Haushalt

Posten der Schätzung	Menge	Preis
Gefertigte Primärstahlkonstruktion (einschließlich 26.0% der Gelenke)	1034 kg x 6 + 91 kg = 6295 kg	22033 €
Gefertigte Pfetten	4108 kg (Eingegeben durch den Benutzer)	11502 €
Gefertigtes Integrationssystem	513.5 m ²	8216 €
Einbau von Stahlkonstruktionen	505.7 m ²	12642 €
Aushub, Gießen und Bewehrung des Fundaments	59.0 m ³	11799 €
Entfernung des Bodens	73.7 m ³	738 €
Insgesamt		66930


Vorläufige Dimensionierung der wichtigsten Strukturelemente

Element	Überprüfen Sie (Es ist in Ordnung, wenn die Rate weniger als 100% beträgt.)
Stütze	OK (91.8 %)
Riegel	OK (92.8 _%)
Linke Diagonalstrebe	OK (79.0 %)
Rechte Diagonalstrebe	OK (78.9 %)

Übersichtsplan

Giebelplan

Achse	Breite der Ladung	Kontinuitätsfaktor
1	5.1 m	1.0
2	10.0 m	1.178
3	7.5 m	1.0
4	7.5 m	1.0
5	10.0 m	1.178
6	5.1 m	1.0

Achse 1 und 6

(Ladebreite: 5.1m, Kontinuitätsfaktor: 1.0)

Knotenpunkt	F _X (daN)	F _Y (daN)	F _Z (daN)	M _X (m.daN)	My (m.daN)	Mz	(m.daN)
Ständige Lasten							
1	0.0	-	-2684.7	-	-219.0		-
		Norma	ler Schne	e			
1	0.0	-	-2054.4	-	-0.0		-
	ι	Jnbeabsid	htigter Sc	:hnee			
1	-0.0	-	-0.0	-	-0.0		-
	Dure	hhängen	des linke	n Windes			
1	296.8	-	-1136.2	-	-2069.4		
	Abh	ebekraft (des linker	Windes			
1	-339.8	-	2474.1	-	5073.5		-
	Durc	hhängen o	des rechte	n Windes			
1	99.7	-	-1090.0	-	3977.0		-
	Abh	ebekraft d	les rechte	n Windes			
1	-511.0	-	2373.6	-	-9204.4		-
	Durch	hängen d	es Vorder	er Windes			
1	95.6	669.3	-542.3	-2719.9	495.4	-0	0.0
	Abhe	ebekraft d	es Vorder	er Windes			
1	-339.0	669.3	1922.8	-2719.9	-1756.7	-0	0.0
Rückenwind in Durchhänge							
1	95.6	-669.3	-542.3	2719.9	495.4	С	0.0
		Rückenwi	nd im Auf	wind			
1	-339.0	-669.3	1922.8	2719.9	-1756.7	С	0.0

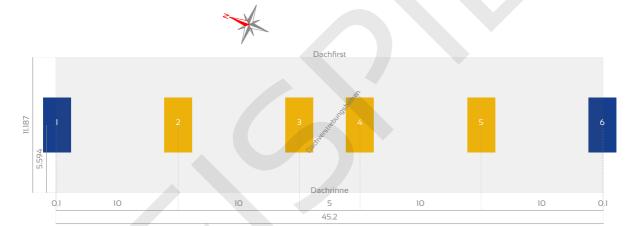
Achse 2, 3, 4 und 5

(Ladebreite: 10.0m, Kontinuitätsfaktor: 1.178)

Knotenpunkt	F _X (daN)	F _Y (daN)	F _Z (daN)	M _X (m.daN)	My (m.daN)	M _Z (m.daN)	
		Ständ	lige Laste	en			
1	0.0	-	-4834.2	-	-592.5	-	
Normaler Schnee							
1	0.0	-	-4743.6	-	-0.0	-	
	ı	Unbeabsi	chtigter S	chnee			
1	-0.0	-	-0.0	-	-0.0	-	
	Dur	chhängen	des linke	n Windes			
1	559.0	-	-2623.3	-	-5079.5	-	
	Abl	hebekraft	des linke	n Windes			
1	-910.9	-	5712.6	-	11413.1	-	
	Durc	hhängen	des recht	en Windes	5		
1	351.3	-	-2516.8	-	9471.8	-	
	Abh	ebekraft d	des rechte	en Windes			
1	-1058.9	-	5480.5	-	-20963.6	-	
	Durch	hhängen d	des Vorde	rer Winde	s		
1	220.8	669.3	-1252.0	-2719.9	1143.9	-0.0	
Abhebekraft des Vorderer Windes							
1	-782.8	669.3	4439.7	-2719.9	-4056.1	-0.0	
	R	ückenwin	d in Durcl	hhänge			
1	220.8	-669.3	-1252.0	2719.9	1143.9	0.0	
		Rückenwi	ind im Au	fwind			
1	-782.8	-669.3	4439.7	2719.9	-4056.1	0.0	

$\underline{\textit{Zus\"{a}tzliche}} \ Einwirkungen, die \ f\"{u}r \ an \ das \ Stabilit\"{a}tssystem \ angrenzende \ St\"{u}tzen \ zu \ ber\"{u}cksichtigen \ sind \ (Dachaussteifungstr\"{a}ger):$

Position	F _X (daN)	F _Y (daN)	F _Z (daN)	M _X (m.daN)	M _Y (m.daN)	M _Z (m.daN)			
Durchhängen des Vorderer Windes und Abhebekraft des Vorderer Windes									
Achse 4	44.8	-	7.9	-	214.1	-			
Achse 3	-44.8	-	-7.9	-	-214.1	-			
	Rückenwind in Durchhänge und Rückenwind im Aufwind								
Achse 3	44.8	-	7.9	-	214.1	-			
Achse 4	-44.8	-	-7.9	-	-214.1	-			


Dieses quaderförmige Flächenfundament wird nach Eurocode 7 (EC7) berechnet. Sein Einheitsvolumen ist **9.832 m³** (die konkreten Abmessungen des Fundaments können in einer Ausführungsstudie unserer Konstruktionsabteilung angegeben und anhand des Bodengutachtens berechnet werden).

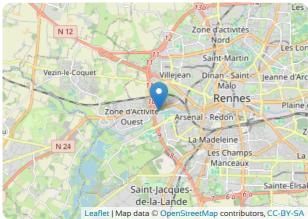
Die Bemessung des Fundaments erfolgt im Wesentlichen nach dem Kippmoment. Der Entwurf basiert auf dem am stärksten belasteten Portalrahmen und wird dann am Fuß aller Portalrahmen dupliziert, um die Arbeit auf der Baustelle zu erleichtern. Dieser Ansatz gewährleistet Einheitlichkeit und Effizienz bei der Konstruktion.

Die für diesen Entwurf verwendete Bodenspannung unter dem Oberflächenfundament beträgt 0.168 MPa, was 1.68 bar entspricht (eher minderwertiger Boden). Bei dieser Vordimensionierung wurde keine Bodenuntersuchung berücksichtigt, und es wird notwendig sein, die Gültigkeit der Tragfähigkeitsannahme zu überprüfen.

Die Folgenklasse CC2 nach Eurocode O (ECO) ist für dieses Projekt geeignet, und für die Fundamente wurde die Strukturklasse S4 gewählt. Letztere entspricht einer indikativen Lebensdauer des Projekts von 50 Jahren.

Grundrissplan

Annahmen für Berechnungen


Tote Lasten

Name	Тур	Intensität
Eigengewicht von Stahlkonstruktionen	Dichte	7698 daN/m³
Sonnenkollektoren	gleichmäßig verteilte Last	20.0 kg/m²
Pfetten	gleichmäßig verteilte Last	8.0 kg/m²
Dachrinne	Linienlast an der Unterkante	10.0 kg/m

Standort

Koordinaten im Weltgeodätischen System 1984 (WGS84):

Adresse: Quai Éric Tabarly, 35043 Rennes, Bretagne

48.10711776 - , -1.71473623

Höhenlagen

Entfernungen / Richtung	Am Ort der Errichtung	500 m	1000 m
Norden		32 m	40 m
Nordost		33 m	43 m
Ost		24 m	24 m
Südost	26 m	24 m	30 m
Süd		25 m	30 m
Südwest		23 m	25 m
West		26 m	26 m
Nordwest		29 m	39 m

Quelle : European digital elevation model Copernicus 25m

Schnee (NF EN 1991-1-3/NA (05/2007) + A1 (07/2011))

Auf dem Boden

Zone: Al $(s_{k,0} = 0.45 \frac{k}{k})$ Kriterien für die Zoneneinteilung :ILLE-ET-VILAINE (35)

 $Charakteristischer Wert des Schnees auf dem Boden an dem betreffenden Standort : s_{k,26\,\text{m}} = 0.45\,\text{keV/m}^2$

Bodenschneelast mit einer Wiederkehrperiode von 50 Jahren : $s_{50\, \text{Jahre}}$ = 0.45 ω

Auf dem Dach

Name	Тур	Charakteristischer Wert	Dachformfaktor	Bemessungswert (horizontale Projektion)
Normaler Schnee	gleichmäßig verteilte Last	45.0 daN/m²	0.8	35.45 daN/m²

Terrain-Kategorien

Sektoren	s1	s2	s3	s4
Kategorien	IV	IIIb	IIIb	IIIb

Radius R des Winkelsektors: 300 m

Niedrige, auf den Sektor ausgerichtete Kante: s3

$\underline{Wind-Spitzengeschwindigkeitsdruck}$

Zone: 2 ($v_{b,0} = 24.0 \text{ m/s}$) Kriterien für die Zoneneinteilung: ILLE-ET-VILAINE (35) Zone c_{dir} : 2

Sektoren	s1	s2	s3	s4
Definition des Sektors	von 24 · bis 114 ·	von 114 · bis 204 ·	von 204 · bis 294 ·	von 294 · bis 24
Fundamentaler Wert der Basiswindgeschwindigkeit v _{b,0}		24.	O m/s	
Parameter der Form K		C	0.2	
Exponent n		С	0.5	
Jährliche Überschreitungswahrscheinlichkeit p		0.	02	
Wahrscheinlichkeitsfaktor c _{prob}		1	.0	
Richtungsfaktor c _{dir}	1.0	1.0	1.0	1.0
Grundlegende Windgeschwindigkeit v _b	24.0 m/s	24.0 m/s	24.0 m/s	24.0 m/s
Referenz-Rauheitslänge z _{O,II}		0.0	D5 m	
Rauhigkeitslänge z ₀	1.0 m	0.5 m	0.5 m	0.5 m
Faktor Terrain k _r	0.234	0.223	0.223	0.223
Höhe über dem Boden z		5.9	86 m	
Minimale Höhe z _{min}	15.0 m	9.0 m	9.0 m	9.0 m
Rauhigkeitsfaktor c _{r(z)}	0.635	0.645	0.645	0.645
Orographie-Faktor* c _{o(z)}	1.0	1.0	1.0	1.0
Mittlere Windgeschwindigkeit v _{m(z)}	15.2 m/s	15.5 m/s	15.5 m/s	15.5 m/s
Turbulenzfaktor k _l	0.854	0.923	0.923	0.923
Standardabweichung der Turbulenz $\sigma_{\!\scriptscriptstyle V}$	4.804 m/s	4.943 m/s	4.943 m/s	4.943 m/s
Intensität der Turbulenz I _{v(z)}	0.315	0.319	0.319	0.319
Luftdichte ρ		1.22	5 kg/m ³	
Expositionsfaktor c _{e(z)}	1.292	1.347	1.347	1.347
Spitzengeschwindigkeitsdruck q _{p(z)}	455.8 N/m ²	475.1 N/m²	475.1 N/m²	475.1 N/m²
Spitzenwindgeschwindigkeit für Grenzzustände der Gebrauchstauglichkeit V _{p(z),SLS}	98.2 km/h	100.3 km/h	100.3 km/h	100.3 km/h
Spitzenwindgeschwindigkeit für Ultimate Limit States v _{p(z),ULS}	120.3 km/h	122.8 km/h	122.8 km/h	122.8 km/h

^{*} Ici, le coefficient d'orographie est calculé selon la procédure 1, pour une orographie constituée d'obstacles de hauteurs et de formes variées. Ce type d'orographie est le plus fréquemment rencontré, mais si le bâtiment est dans un cas d'orographie constitué d'obstacles bien individualisés (collines isolées ou en chaîne, falaises et escarpements), le coefficient d'orographie doit être calculé selon la procédure 2.Conformément à EN 1991-1-4 §4.3.3(1), le coefficient d'orographie calculé (1.0) n'est pas pris en compte car il n'augmente pas les vitesses du vent de plus de 5%.

Zone : 2 $(a_{gR} = 0.7 \text{ m/s}^2)$ Kriterien für die Zoneneinteilung :ILLE-ET-VILAINE (35)

Vom Bauherrn festgelegte Wichtigkeitskategorie: I - Bauwerke mit geringer Bedeutung für den Schutz der Allgemeinheit, mit geringem Personenverkehr (z. B. Scheunen, Kulturgewächshäuser, usw.)

Bedingung für die seismische Überprüfung

In Frankreich ist für Gebäude der Bedeutungskategorie I keine seismische Analyse erforderlich.

Zusätzliche Kommentare

Die oben dargestellten Ergebnisse sind eine vorläufige Studie und werden nicht bestätigt.

Auf Wunsch können wir Ihnen einen vollständigen und zertifizierten Berechnungsbericht zur Verfügung stellen.

Bestellen Sie die Ausführungsstudie

Dieser Service umfasst auch die Optimierung der Geometrie der Struktur, der Querschnitte der Elemente und der Verbindungen.

Zusammenfassung des Entwurfsberichts zur Strukturanalyse:

- A Allgemeine Informationen
- B Daten und Zusammenfassung der Ergebnisse
 - B1-Skizzen und Abmessungen der Photovoltaik-Schattendach
 - B 2 Zusammenfassung der Prüfungen nach den Eurocodes
- C Bericht über die Verteilung der Ladungen
- D Strukturelles Verhalten und Konstruktionsprinzipien
 - o D1-Pfetten
 - D1.1 Empfohlene Mindestdicke
 - D 1.2 Für die Bemessung von kaltgeformten Pfetten erforderliche Normalkräfte
 - D 2 Riegel
 - D3-Stütze
 - D4-Baugruppen
 - D 4.1 Stützenfuß und Verankerungen
 - D 4.2 Obere Endplatte der Stütze
 - D 4.3 Diagonale Streben Zwickel
 - D 4.4 Querverstrebungen im Dach
- Anhang 1 Merkmale des Modells
 - Anhang 1.1 Knotenpunkte
 - Anhang 1.2 Elemente
 - Anhang 1.3 Querschnitte und Materialien
- Anhang 2 Belastungen
 - Anhang 2.1 Tote Lasten
 - Anhang 2.2 Wartungsbedingte Belastungen
 - Anhang 2.3 Klimatische Belastungen
 - Anhang 2.3.1 Standort
 - Anhang 2.3.2 Höhenlagen
 - Anhang 2.3.3 Bauwerk
 - Anhang 2.3.4 Terrain-Kategorien
 - Anhang 2.3.5 Schnee (NF EN 1991-1-3/NA (05/2007) + A1 (07/2011)
 - Anhang 2.3.5.1 Auf dem Boden
 - Anhang 2.3.5.2 Auf dem Dach
 - Anhang 2.3.6 Wind (NF EN 1991-1-4/NA (03/2008) + AI (07/2011) + A2 (09/2012) + A3 (04/2019))
 - Anhang 2.3.6.1 Wind Spitzengeschwindigkeitsdruck
 - Anhang 2.3.6.2 Grad der Verstopfung unter dem Dach
 - Anhang 2.3.6.3 Flächenpressungen auf dem Dach
 - Anhang 2.3.6.4 Reibung an den Elementen
 - Anhang 2.3.6.5 Struktureller Faktor C₅C_d (NFEN 1991-1-4/NA (03/2008) 56)
 - Anhang 2.4 Thermische Maßnahmen (NFEN 1991-1-5/NA (02/2008))
 - Anhang 2.4.1 Temperaturen
 - Anhang 2.4.2 Erweiterung
 - Anhang 2.5 Erdbeben (Code de l'environnement Article D563-8-1 (09/01/2015) + JORF n°0248 du 24/10/2010 texte N°5
 - Anhang 2.5.1 Daten zur Konstruktion
 - Anhang 2.5.2 Bedingung für die seismische Überprüfung
 - Anhang 2.6 Lädt Tabellen
 - Anhang 2.6.1 Belastungen durch Eigengewicht
 - Anhang 2.6.2 Geballte Ladung
 - Anhang 2.7 Belastungskombinationen ()
 - Anhang 2.7.1 Ultimative Grenzzustände
 - Anhang 2.7.2 Grenzzustände der Gebrauchstauglichkeit
- Anhang 3 Mechanische Berechnungsergebnisse
 - Anhang 3.1 Normale Kräfte N_X
 - Anhang 3.2 Scherkräfte V_Z
 - Anhang 3.3 Biegemomente M_Y
 - Anhang 3.4 Scherkräfte V_Y
 - Anhang 3.5 Biegemomente M_Z
 - Anhang 3.6 Knotenpunktverschiebungen
 - Anhang 3.6.1 Horizontale Übersetzungen U_X
 - lacktriangledown Anhang 3.6.2 Horizontale Übersetzungen U_Y
 - Anhang 3.6.3 Vertikale Übersetzungen UZ
- Anhang 4 Detaillierte Prüfung der Elemente 0

- Anhang 4.2 Riegel
- Anhang 4.3 Diagonale Streben
- - Anhang 5.1 Querverstrebungen im Dach
- Anhang 6 Detaillierte Überprüfung der Verbindungen $_{\rm 0}$
 - Anhang 6.1 Stützenfuß und Verankerungen
 - Anhang 6.2 Obere Endplatte der Stütze
 - Anhang 6.3 Diagonale Streben Zwickel
 - Anhang 6.4 Querverstrebungen im Dach

Als System für den Einbau von Pfetten gilt: unbekannt (mit oder ohne Ärmel)

